Skip to main content
Log in

Mechanistic insight into gold nanorod transformation in nanoscale confinement of ZIF-8

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Core-shell hybrid nanomaterials have shown new properties and functions that are not attainable by their single counterparts. Nanoscale confinement effect by porous inorganic shells in the hybrid nanostructures plays an important role for chemical transformation of the core nanoparticles. However, metal-organic frameworks (MOFs) have been rarely applied for understanding mechanical insight into such nanoscale phenomena in confinement, although MOFs would provide a variety of properties for the confining environment than other inorganic shells such as silica and zeolite. Here, we examine chemical transformation of a gold nanorod core enclosed by a zeolitic imidazolate framework (ZIF) through chemical etching and regrowth, followed by quantitative analysis in the core dimension and curvature. We find the nanorod core shows template-effective behavior in its morphological transformation. In the etching event, the nanorod core is spherically carved from its tips. The regrowth on the spherically etched core inside the ZIF gives rise to formation of a raspberry-like branched nanostructure in contrast to the growth of an octahedral shape in bulk condition. We attribute the shell-directed regrowth to void space generated at the interfaces between the etched core and the ZIF shell, intercrystalline gaps in multi-domain ZIF shells, and local structural deformation from the acidic reaction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, X. H.; Zhang, J.; Wang, L. W.; Yang, T. L.; Guo, X. Z.; Wu, S. H.; Wang, S. R. 3D hierarchically porous ZnO structures and their functionalization by Aunanoparticles for gas sensors. J. Mater. Chem. 2011, 21, 349–356.

    Google Scholar 

  2. He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741–3745.

    CAS  Google Scholar 

  3. Xu, Z. D.; Yang, L. Z.; Xu, C. L. Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range. Anal. Chem. 2015, 87, 3438–3444.

    CAS  Google Scholar 

  4. Zhang, Q.; Lee, I.; Joo, J. B.; Zaera, F.; Yin, Y. D. Core-shell nanostructured catalysts. Acc. Chem. Res. 2013, 46, 1816–1824.

    CAS  Google Scholar 

  5. Moon, H. R.; Lim, D. W.; Suh, M. P. Fabrication of metal nanoparticles in metal-organic frameworks. Chem. Soc. Rev. 2013, 42, 1807–1824.

    CAS  Google Scholar 

  6. Lee, J.; Kim, S. M.; Lee, I. S. Functionalization of hollow nanoparticles for nanoreactor applications. Nano Today 2014, 9, 631–667.

    CAS  Google Scholar 

  7. Park, J. C.; Bang, J. U.; Lee, J.; Ko, C. H.; Song, H. Ni@SiO2 yolk-shell nanoreactor catalysts: High temperature stability and recyclability. J. Mater. Chem. 2010, 20, 1239–1246.

    CAS  Google Scholar 

  8. Koo, J. H.; Lee, S. W.; Park, J. Y.; Lee, I. S. Nanospace-confined high-temperature solid-state reactions: Versatile synthetic route for high-diversity pool of catalytic nanocrystals. Chem. Mater. 2017, 29, 9463–9471.

    CAS  Google Scholar 

  9. Kumar, A.; Jeon, K. W.; Kumari, N.; Lee, I. S. Spatially confined formation and transformation of nanocrystals within nanometer-sized reaction media. Acc. Chem. Res. 2018, 51, 2867–2879.

    CAS  Google Scholar 

  10. Sugikawa, K.; Nagata, S.; Furukawa, Y.; Kokado, K.; Sada, K. Stable and functional gold nanorod composites with a metal-organic framework crystalline shell. Chem. Mater. 2013, 25, 2565–2570.

    CAS  Google Scholar 

  11. Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J. D.; Doonan, C. J. Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev. 2016, 307, 237–254.

    CAS  Google Scholar 

  12. Ke, F.; Zhu, J. F.; Qiu, L. G.; Jiang, X. Controlled synthesis of novel Au@MIL-100(Fe) core-shell nanoparticles with enhanced catalytic performance. Chem. Commun. 2013, 49, 1267–1269.

    CAS  Google Scholar 

  13. Zhou, J. J.; Wang, P.; Wang, C. X.; Goh, Y. T.; Fang, Z.; Messersmith, P. B.; Duan, H. W. Versatile core-shell nanoparticle@metal-organic framework nanohybrids: Exploiting mussel-inspired polydopamine for tailored structural integration. ACS Nano 2015, 9, 6951–6960.

    CAS  Google Scholar 

  14. Li, G. D.; Zhao, S. L.; Zhang, Y.; Tang, Z. Y. Metal-organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: Recent progress and perspectives. Adv. Mater. 2018, 30, 1800702.

    Google Scholar 

  15. Liu, Y. L.; Tang, Z. Y. Multifunctional nanoparticle@MOF core-shell nanostructures. Adv. Mater. 2013, 25, 5819–5825.

    CAS  Google Scholar 

  16. Chen, J. X.; Feng, J.; Yang, F.; Aleisa, R.; Zhang, Q.; Yin, Y. D. Space-confined seeded growth of Cu nanorods with strong surface plasmon resonance for photothermal actuation. Angew. Chem., Int.Ed. 2019, 131, 9376–9382.

    Google Scholar 

  17. Grommet, A. B.; Feller, M.; Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 2020, 15, 256–271.

    CAS  Google Scholar 

  18. Lee, H. K.; Lee, Y. H.; Morabito, J. V; Liu, Y. J.; Koh, C. S. L.; Phang, I. Y.; Pedireddy, S.; Han, X. M.; Chou, L. Y.; Tsung, C. K. et al. Driving CO2 to a quasi-condensed phase at the interface between a nanoparticle surface and a metal-organic framework at 1 Bar and 298 K. J. Am. Chem. Soc. 2017, 139, 11513–11518.

    CAS  Google Scholar 

  19. Sanz-Ortiz, M. N.; Sentosun, K.; Bals, S.; Liz-Marzán, L. M. Templated growth of surface enhanced Raman scattering-active branched gold nanoparticles within radial mesoporous silica shells. ACS Nano 2015, 9, 10489–10497.

    CAS  Google Scholar 

  20. Deng, T. S.; van der Hoeven, J. E. S.; Yalcin, A. O.; Zandbergen, H. W.; van Huis, M. A.; van Blaaderen, A. Oxidative etching and metal overgrowth of gold nanorods within mesoporous silica shells. Chem. Mater. 2015, 27, 7196–7203.

    CAS  Google Scholar 

  21. Wu, Z. H.; Liang, Y. L.; Guo, Q.; Zhang, K. Q.; Liang, S. F.; Yang, L. Y.; Xiao, Q.; Wang, D. Study on selective oxidations of gold nanorod and mesoporous silica-coated gold nanorod. J. Mater. Sci. 2019, 54, 8133–8147.

    CAS  Google Scholar 

  22. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Google Scholar 

  23. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

    CAS  Google Scholar 

  24. Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem., Int. Ed. 2006, 45, 1557–1559.

    CAS  Google Scholar 

  25. Rodríguez-Fernández, J.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. J. Phys. Chem. B 2005, 109, 14257–14261.

    Google Scholar 

  26. O’Brien, M. N.; Jones, M. R.; Brown, K. A.; Mirkin, C. A. Universal noble metal nanoparticle seeds realized through iterative reductive growth and oxidative dissolution reactions. J. Am. Chem. Soc. 2014, 136, 7603–7606.

    Google Scholar 

  27. Underwood, S.; Mulvaney, P. Effect of the solution refractive index on the color of gold colloids. Langmuir 1994, 10, 3427–3430.

    CAS  Google Scholar 

  28. Hauwiller, M. R.; Ondry, J. C.; Chan, C. M.; Khandekar, P.; Yu, J.; Alivisatos, A. P. Gold nanocrystal etching as a means of probing the dynamic chemical environment in graphene liquid cell electron microscopy. J. Am. Chem. Soc. 2019, 141, 4428–4437.

    CAS  Google Scholar 

  29. Hirakawa, T.; Kamat, P. V. Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. J. Am. Chem. Soc. 2005, 127, 3928–3934.

    CAS  Google Scholar 

  30. Pan, Y. C.; Liu, Y. Y.; Zeng, G. F.; Zhao, L.; Lai, Z. P. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 2011, 47, 2071–2073.

    CAS  Google Scholar 

  31. Ayyappan, S.; Gopalan, R. S.; Subbanna, G. N.; Rao, C. N. R. Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts. J. Mater. Res. 1997, 12, 398–401.

    CAS  Google Scholar 

  32. Cullity, B. D.; Stock, S. R. Elements of X-ray Diffraction; 3rd ed. Prentice Hall: Upper Saddle River, 2001; pp 96–102.

    Google Scholar 

  33. Tsai, C. W.; Langner, E. H. G. The effect of synthesis temperature on the particle size of nano-ZIF-8. Micropor. Mesopor. Mater. 2016, 221, 8–13.

    CAS  Google Scholar 

  34. Vijayaraghavan, P.; Liu, C. H.; Hwang, K. C. Synthesis of multibranched gold nanoechinus using a gemini cationic surfactant and its application for surface enhanced Raman scattering. ACS Appl. Mater. Interfaces 2016, 8, 23909–23919.

    CAS  Google Scholar 

  35. Ong, Z. Y.; Chen, S.; Nabavi, E.; Regoutz, A.; Payne, D. J.; Elson, D. S.; Dexter, D. T.; Dunlop, I. E.; Porter, A. E. Multibranched gold nanoparticles with intrinsic LAT-1 targeting capabilities for selective photothermal therapy of breast cancer. ACS Appl. Mater. Interfaces 2017, 9, 39259–39270.

    CAS  Google Scholar 

  36. Kuo, C. H.; Huang, M. H. Synthesis of branched gold nanocrystals by a seeding growth approach. Langmuir 2005, 21, 2012–2016.

    CAS  Google Scholar 

  37. Sim, H. Y. F.; Lee, H. K.; Han, X. M.; Koh, C. S. L.; Phan-Quang, G. C.; Lay, C. L.; Kao, Y. C.; Phang, I. Y.; Yeow, E. K. L.; Ling, X. Y. Concentrating immiscible molecules at solid@MOF interfacial nanocavities to drive an inert gas-liquid reaction at ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 17058–17062.

    CAS  Google Scholar 

  38. Zhou, S.; Wei, Y. Y.; Li, L. B.; Duan, Y. F.; Hou, Q. Q.; Zhang, L. L.; Ding, L. X.; Xue, J.; Wang, H. H.; Caro, J. Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation. Sci. Adv. 2018, 4, eaau1393.

    CAS  Google Scholar 

  39. Pang, S. H.; Han, C.; Sholl, D. S.; Jones, C. W.; Lively, R. P. Facet-specific stability of ZIF-8 in the presence of acid gases dissolved in aqueous solutions. Chem. Mater. 2016, 28, 6960–6967.

    CAS  Google Scholar 

  40. Kim, J.; Song, X. H.; Kim, A.; Luo, B. B.; Smith, J. W.; Ou, Z. H.; Wu, Z. X.; Chen, Q. Reconfigurable polymer shells on shape-anisotropic gold nanoparticle cores. Macromol. Rapid Commun. 2018, 39, 1800101.

    Google Scholar 

  41. Zheng, G. C.; de Marchi, S.; López-Puente, V.; Sentosun, K.; Polavarapu, L.; Pérez-Juste, I.; Hill, E. H.; Bals, S.; Liz-Marzán, L. M.; Pastoriza-Santos, I.; Pérez-Juste, J. Encapsulation of single plasmonic nanoparticles within ZIF-8 and SERS analysis of the MOF flexibility. Small 2016, 12, 3935–3943.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (No. 20192050100060) from the Korea government Ministry of Trade, Industry, and Energy (MOTIE) and the Korea Basic Science Institute (KBSI) National Research Facilities & Equipment Center (NFEC) (No. 2019R1A6C1010042) from the Ministry of Education of Korea. In addition, this work was partially supported by the Nano·Material Technology Development Program (No. 2009-0082580) and Basic Science Research Program (No. 2020R1C1C1007568) through the National Research Foundation of Korea funded by the Ministry of Science, Information & Communication Technology (ICT), and Future Planning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juyeong Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, C., Lee, J., Yao, L. et al. Mechanistic insight into gold nanorod transformation in nanoscale confinement of ZIF-8. Nano Res. 14, 66–73 (2021). https://doi.org/10.1007/s12274-020-3042-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3042-z

Keywords

Navigation