Skip to main content
Log in

How defects influence the photoluminescence of TMDCs

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) transition metal dichalcogenide (TMDC) monolayers, a class of ultrathin materials with a direct bandgap and high exciton binding energies, provide an ideal platform to study the photoluminescence (PL) of light-emitting devices. Atomically thin TMDCs usually contain various defects, which enrich the lattice structure and give rise to many intriguing properties. As the influences of defects can be either detrimental or beneficial, a comprehensive understanding of the internal mechanisms underlying defect behaviour is required for PL tailoring. Herein, recent advances in the defect influences on PL emission are summarized and discussed. Fundamental mechanisms are the focus of this review, such as radiative/nonradiative recombination kinetics and band structure modification. Both challenges and opportunities are present in the field of defect manipulation, and the exploration of mechanisms is expected to facilitate the applications of 2D TMDCs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Google Scholar 

  2. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 70, 1271–1275.

    Google Scholar 

  3. Withers, F.; Del Pozo-Zamudio, O.; Schwarz, S.; Dufferwiel, S.; Walker, P. M.; Godde, T.; Rooney, A. P.; Gholinia, A.; Woods, C. R.; Blake, P. et al. WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature. Nano Lett. 2015, 15, 8223–8228.

    CAS  Google Scholar 

  4. Zheng, W. B.; Jiang, Y.; Hu, X. L.; Li, H. L.; Zeng, Z. X. S.; Wang, X.; Pan, A. L. Light emission properties of 2D transition metal dichalcogenides: Fundamentals and applications. Adv. Opt. Mater. 2018, 6, 1800420.

    Google Scholar 

  5. Schwarz, S.; Kozikov, A.; Withers, F.; Maguire, J. K.; Foster, A. P.; Dufferwiel, S.; Hague, L.; Makhonin, M. N.; Wilson, L. R.; Geim, A. K. et al. Electrically pumped single-defect light emitters in WSe2. 2D Mater. 2016, 3, 025038.

    Google Scholar 

  6. Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 2012, 86, 115409.

    Google Scholar 

  7. Pei, J. J.; Yang, J.; Yildirim, T.; Zhang, H.; Lu, Y. R. Many-body complexes in 2D semiconductors. Adv. Mater. 2019, 31, 1706945.

    Google Scholar 

  8. Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.

    CAS  Google Scholar 

  9. Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

    CAS  Google Scholar 

  10. Shi, H. Y.; Yan, R. S.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. B. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 2013, 7, 1072–1080.

    CAS  Google Scholar 

  11. Wang, H. N.; Zhang, C. J.; Rana, F. Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2. Nano Lett. 2015, 15, 8204–8210.

    CAS  Google Scholar 

  12. Wang, H. N.; Zhang, C. J.; Rana, F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett. 2015, 15, 339–345.

    CAS  Google Scholar 

  13. Van Der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    CAS  Google Scholar 

  14. Ugeda, M. M.; Bradley, A. J.; Shi, S. F.; da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. K.; Hussain, Z.; Shen, Z. X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091–1095.

    CAS  Google Scholar 

  15. Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831–2836.

    CAS  Google Scholar 

  16. Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged and free excitons. Sci. Rep. 2013, 3, 2657.

    Google Scholar 

  17. Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738–5745.

    CAS  Google Scholar 

  18. Han, H. V.; Lu, A. Y.; Lu, L. S.; Huang, J. K.; Li, H. N.; Hsu, C. L.; Lin, Y. C.; Chiu, M. H.; Suenaga, K.; Chu, C. W. et al. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano 2016, 10, 1454–1461.

    CAS  Google Scholar 

  19. Amani, M.; Lien, D. H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S. R.; Addou, R.; KC, S; Dubey, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065–1068.

    CAS  Google Scholar 

  20. Zhang, X. K.; Liao, Q. L.; Liu, S.; Kang, Z.; Zhang, Z.; Du, J. L.; Li, F.; Zhang, S. H.; Xiao, J. K.; Liu, B. S. et al. Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun. 2017, 8, 15881.

    CAS  Google Scholar 

  21. Koperski, M.; Nogajewski, K.; Arora, A.; Cherkez, V.; Mallet, P.; Veuillen, J. Y.; Marcus, J.; Kossacki, P.; Potemski, M. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 2015, 10, 503–506.

    CAS  Google Scholar 

  22. He, Y. M.; Clark, G.; Schaibley, J. R.; He, Y.; Chen, M. C.; Wei, Y. J.; Ding, X.; Zhang, Q.; Yao, W.; Xu, X. D. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 2015, 10, 497–502.

    CAS  Google Scholar 

  23. Su, W. T.; Li, Y. G.; Chen, L. F.; Huo, D. X.; Song, K. X.; Huang, X. W.; Shu, H. B. Nonstoichiometry induced broadband tunable photoluminescence of monolayer WSe2. Chem. Commun 2018, 54, 743–746.

    CAS  Google Scholar 

  24. Chen, Y. F.; Xi, J. Y.; Dumcenco, D. O.; Liu, Z.; Suenaga, K.; Wang, D.; Shuai, Z. G.; Huang, Y. S.; Xie, L. M. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 2013, 7, 4610–4616.

    CAS  Google Scholar 

  25. Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 2013, 88, 045318.

    Google Scholar 

  26. Yang, X. L.; Guo, S. H.; Chan, F. T.; Wong, K. W.; Ching, W. Y. Analytic solution of a two-dimensional hydrogen atom. I. Nonrelativistic theory. Phys. Rev. A 1991, 43, 1186–1196.

    CAS  Google Scholar 

  27. Kylänpää, I.; Komsa, H. P. Binding energies of exciton complexes in transition metal dichalcogenide monolayers and effect of dielectric environment. Phys. Rev. B 2015, 92, 205418.

    Google Scholar 

  28. Mai, C.; Barrette, A.; Yu, Y. F.; Semenov, Y. G.; Kim, K. W.; Cao, L. Y.; Gundogdu, K. Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 2014, 14, 202–206.

    CAS  Google Scholar 

  29. Zhang, D. K.; Kidd, D. W.; Varga, K. Excited biexcitons in transition metal dichalcogenides. Nano Lett. 2015, 15, 7002–7005.

    CAS  Google Scholar 

  30. Plechinger, G.; Nagler, P.; Kraus, J.; Paradiso, N.; Strunk, C.; Schuller, C.; Korn, T. Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solidi RRL 2015, 9, 457–461.

    CAS  Google Scholar 

  31. Suh, J.; Park, T. E.; Lin, D. Y.; Fu, D. Y.; Park, J.; Jung, H. J.; Chen, Y. B.; Ko, C.; Jang, C.; Sun, Y. H. et al. Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution. Nano Lett. 2014, 14, 6976–6982.

    CAS  Google Scholar 

  32. Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.

    Google Scholar 

  33. Zhang, S.; Wang, C. G.; Li, M. Y.; Huang, D.; Li, L. J.; Ji, W.; Wu, S. W. Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 2017, 119, 046101.

    Google Scholar 

  34. Neupane, G. P.; Tran, M. D.; Yun, S. J.; Kim, H.; Seo, C.; Lee, J.; Han, G. H.; Sood, A. K.; Kim, J. Simple chemical treatment to n-dope transition-metal dichalcogenides and enhance the optical and electrical characteristics. ACS Appl. Mater. Interfaces 2017, 9, 11950–11958.

    CAS  Google Scholar 

  35. Su, W. T.; Kumar, N.; Spencer, S. J.; Dai, N.; Roy, D. Transforming bilayer MoS2 into single-layer with strong photoluminescence using UV-ozone oxidation. Nano Res. 2015, 8, 3878–3886.

    CAS  Google Scholar 

  36. Lien, D. H.; Uddin, S. Z.; Yeh, M.; Amani, M.; Kim, H.; Ager III, J. W.; Yablonovitch, E.; Javey, A. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 2019, 364, 468–471.

    CAS  Google Scholar 

  37. Ardekani, H.; Younts, R.; Yu, Y. L.; Cao, L. Y.; Gundogdu, K. Reversible photoluminescence tuning by defect passivation via laser irradiation on aged monolayer MoS2. ACS Appl. Mater. Interfaces 2019, 11, 38240–38246.

    CAS  Google Scholar 

  38. Zheng, B. Y.; Zheng, W. H.; Jiang, Y.; Chen, S. L.; Li, D.; Ma, C.; Wang, X. X.; Huang, W.; Zhang, X. H.; Liu, H. W. et al. WO3-WS2 vertical bilayer heterostructures with high photoluminescence quantum yield. J. Am. Chem. Soc. 2019, 141, 11754–11758.

    CAS  Google Scholar 

  39. Sim, D. M.; Kim, M.; Yim, S.; Choi, M. J.; Choi, J.; Yoo, S.; Jung, Y. S. Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano 2015, 9, 12115–12123.

    CAS  Google Scholar 

  40. Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

    Google Scholar 

  41. Kim, M. S.; Yun, S. J.; Lee, Y.; Seo, C.; Han, G. H.; Kim, K. K.; Lee, Y. H.; Kim, J. Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS Nano 2016, 10, 2399–2405.

    CAS  Google Scholar 

  42. Jadczak, J.; Kutrowska-Girzycka, J.; Kapuściński, P.; Huang, Y. S.; Wójs, A.; Bryja, L. Probing of free and localized excitons and trions in atomically thin WSe2, WS2, MoSe2 and MoS2 in photoluminescence and reflectivity experiments. Nanotechnology 2017, 28, 395702.

    CAS  Google Scholar 

  43. Barbone, M.; Montblanch, A. R. P.; Kara, D. M.; Palacios-Berraquero, C.; Cadore, A. R.; De Fazio, D.; Pingault, B.; Mostaani, E.; Li, H.; Chen, B. et al. Charge-tuneable biexciton complexes in monolayer WSe2. Nat. Commun. 2018, 9, 3721.

    Google Scholar 

  44. Pei, J. J.; Yang, J.; Wang, X. B.; Wang, F.; Mokkapati, S.; Lü, T. Y.; Zheng, J. C.; Qin, Q. H.; Neshev, D.; Tan, H. H. et al. Excited state biexcitons in atomically thin MoSe2. ACS Nano 2017, 11, 7468–7475.

    CAS  Google Scholar 

  45. Zhao, S. D.; Tao, L.; Miao, P.; Wang, X. J.; Liu, Z. G.; Wang, Y.; Li, B. S.; Sui, Y.; Wang, Y. Strong room-temperature emission from defect states in CVD-grown WSe2 nanosheets. Nano Res. 2018, 11, 3922–3930.

    CAS  Google Scholar 

  46. Chow, P. K.; Jacobs-Gedrim, R. B.; Gao, J.; Lu, T. M.; Yu, B.; Terrones, H.; Koratkar, N. Defect-induced photoluminescence in mono layer semiconducting transition metal dichalcogenides. ACS Nano 2015, 9, 1520–1527.

    CAS  Google Scholar 

  47. Wu, Z. T.; Zhao, W. W.; Jiang, J.; Zheng, T.; You, Y. M.; Lu, J. P.; Ni, Z. H. Defect activated photoluminescence in WSe2 monolayer. J. Phys. Chem. C 2017, 121, 12294–12299.

    CAS  Google Scholar 

  48. Greben, K.; Arora, S.; Harats, M. G.; Bolotin, K. I. Intrinsic and extrinsic defect-related excitons in TMDCs. Nano Lett. 2020, 20, 2544–2550.

    CAS  Google Scholar 

  49. Moody, G.; Tran, K.; Lu, X. B.; Autry, T.; Fraser, J. M.; Mirin, R. P.; Yang, L.; Li, X. Q.; Silverman, K. L. Microsecond valley lifetime of defect-bound excitons in monolayer WSe2. Phys. Rev. Lett. 2018, 121, 057403.

    CAS  Google Scholar 

  50. Venkatakrishnan, A.; Chua, H.; Tan, P. X.; Hu, Z. L.; Liu, H. W.; Liu, Y. P.; Carvalho, A.; Lu, J. P.; Sow, C. H. Microsteganography on WS2 monolayers tailored by direct laser painting. ACS Nano 2017, 11, 713–720.

    CAS  Google Scholar 

  51. Finkelstein, G.; Shtrikman, H.; Bar-Joseph, I. Optical spectroscopy of a two-dimensional electron gas near the metal-insulator transition. Phys. Rev. Lett. 1995, 74, 976–979.

    CAS  Google Scholar 

  52. Goodman, A. J.; Willard, A. P.; Tisdale, W. A. Exciton trapping is responsible for the long apparent lifetime in acid-treated MoS2. Phys. Rev. B 2017, 96, 121404.

    Google Scholar 

  53. Knill, E.; Laflamme, R.; Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 2001, 409, 46–52.

    CAS  Google Scholar 

  54. Bennett, C. H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014, 560, 7–11.

    Google Scholar 

  55. Kimble, H. J. The quantum internet. Nature 2008, 453, 1023–1030.

    CAS  Google Scholar 

  56. Toth, M.; Aharonovich, I. Single photon sources in atomically thin materials. Annu. Rev. Phys. Chem. 2019, 70, 123–142.

    CAS  Google Scholar 

  57. Branny, A.; Kumar, S.; Proux, R.; Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 2017, 8, 15053.

    CAS  Google Scholar 

  58. Dang, J. C.; Sun, S. B.; Xie, X.; Yu, Y.; Peng, K.; Qian, C. J.; Wu, S. Y.; Song, F. L.; Yang, J. N.; Xiao, S. et al. Identifying defect-related quantum emitters in monolayer WSe2. Npj 2D Mater. Appl. 2020, 4, 2.

    CAS  Google Scholar 

  59. Klein, J.; Lorke, M.; Florian, M.; Sigger, F.; Sigl, L.; Rey, S.; Wierzbowski, J.; Cerne, J.; Muller, K.; Mitterreiter, E. et al. Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation. Nat. Commun. 2019, 70, 2755.

    Google Scholar 

  60. Zheng, Y. J.; Chen, Y. F.; Huang, Y. L.; Gogoi, P. K.; Li, M. Y.; Li, L. J.; Trevisanutto, P. E.; Wang, Q. X.; Pennycook, S. J.; Wee, A. T. S. et al. Point defects and localized excitons in 2D WSe2. ACS Nano 2019, 13, 6050–6059.

    CAS  Google Scholar 

  61. Tai, K.; Hayes, T. R.; McCall, S. L.; Tsang, W. T. Optical measurement of surface recombination in InGaAs quantum well mesa structures. Appl. Phys. Lett. 1988, 53, 302–303.

    CAS  Google Scholar 

  62. Chi, Z.; Chen, H. H.; Chen, Z.; Zhao, Q.; Chen, H. L.; Weng, Y. X. Ultrafast energy dissipation via coupling with internal and external phonons in two-dimensional MoS2. ACS Nano 2018, 12, 8961–8969.

    CAS  Google Scholar 

  63. Zhang, J. P.; Yao, L. H.; Zhou, N.; Dai, H. W.; Cheng, H.; Wang, M. S.; Zhang, L. M.; Chen, X. D.; Wang, X.; Zhai, T. Y. et al. Multiphoton excitation and defect-enhanced fast carrier relaxation in few-layered MoS2 crystals. J. Phys. Chem. C 2019, 123, 11216–11223.

    CAS  Google Scholar 

  64. Li, Y. L.; Liu, W.; Wang, Y. K.; Xue, Z. H.; Leng, Y. C.; Hu, A. Q.; Yang, H.; Tan, P. H.; Liu, Y. Q.; Misawa, H. et al. Ultrafast electron cooling and decay in monolayer WS2 revealed by time- and energy-resolved photoemission electron microscopy. Nano Lett. 2020, 20, 3747–3753.

    CAS  Google Scholar 

  65. Li, L. Q.; Lin, M. F.; Zhang, X.; Britz, A.; Krishnamoorthy, A.; Ma, R. R.; Kalia, R. K.; Nakano, A.; Vashishta, P.; Ajayan, P. et al. Phononsuppressed auger scattering of charge carriers in defective two-dimensional transition metal dichalcogenides. Nano Lett. 2019, 79, 6078–6086.

    Google Scholar 

  66. Robbins, D. J.; Landsberg, P. T. Impact ionisation and Auger recombination involving traps in semiconductors. J. Phys. C: Solid State Phys. 1980, 13, 2425–2439.

    CAS  Google Scholar 

  67. Wang, H. N.; Strait, J. H.; Zhang, C. J.; Chan, W. M.; Manolatou, C.; Tiwari, S.; Rana, F. Fast exciton annihilation by capture of electrons or holes by defects via auger scattering in monolayer metal dichalcogenides. Phys. Rev. B 2015, 91, 165411.

    Google Scholar 

  68. Li, Y. Z.; Shi, J.; Chen, H. Y.; Wang, R.; Mi, Y.; Zhang, C.; Du, W. N.; Zhang, S.; Liu, Z.; Zhang, Q. et al. The Auger process in multilayer WSe2 crystals. Nanoscale 2018, 10, 17585–17592.

    CAS  Google Scholar 

  69. Xing, X.; Zhao, L. T.; Zhang, Z. Y.; Liu, X. K.; Zhang, K. L.; Yu, Y.; Lin, X.; Chen, H. Y.; Chen, J. Q.; Jin, Z. M. et al. Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate. J. Phys. Chem. C 2017, 121, 20451–20457.

    CAS  Google Scholar 

  70. Chen, K.; Ghosh, R.; Meng, X. H.; Roy, A.; Kim, J. S.; He, F.; Mason, S. C.; Xu, X. C.; Lin, J. F.; Akinwande, D. et al. Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2. Npj 2D Mater. Appl. 2017, 1, 15.

    Google Scholar 

  71. Liu, H.; Wang, C.; Zuo, Z. G.; Liu, D. M.; Luo, J. B. Direct visualization of exciton transport in defective few-layer WS2 by ultrafast microscopy. Adv. Mater. 2020, 32, 1906540.

    CAS  Google Scholar 

  72. Palummo, M.; Bernardi, M.; Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 2015, 15, 2794–2800.

    CAS  Google Scholar 

  73. Liu, H.; Wang, T.; Wang, C.; Liu, D. M.; Luo, J. B. Exciton radiative recombination dynamics and nonradiative energy transfer in two-dimensional transition-metal dichalcogenides. J. Phys. Chem. C 2019, 123, 10087–10093.

    CAS  Google Scholar 

  74. Tanoh, A. O. A.; Alexander-Webber, J.; Xiao, J.; Delport, G.; Williams, C. A.; Bretscher, H.; Gauriot, N.; Allardice, J.; Pandya, R.; Fan, Y. et al. Enhancing photoluminescence and mobilities in WS2 monolayers with oleic acid ligands. Nano Lett. 2019, 19, 6299–6307.

    CAS  Google Scholar 

  75. Sivaram, S. V.; Hanbicki, A. T.; Rosenberger, M. R.; Jernigan, G. G.; Chuang, H. J.; McCreary, K. M.; Jonker, B. T. Spatially selective enhancement of photoluminescence in MoS2 by exciton-mediated adsorption and defect passivation. ACS Appl. Mater. Interfaces 2019, 11, 16147–16155.

    CAS  Google Scholar 

  76. Barja, S.; Refaely-Abramson, S.; Schuler, B.; Qiu, D. Y.; Pulkin, A.; Wickenburg, S.; Ryu, H.; Ugeda, M. M.; Kastl, C.; Chen, C. et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun. 2019, 10, 3382.

    Google Scholar 

  77. Kang, N.; Paudel, H. P.; Leuenberger, M. N.; Tetard, L.; Khondaker, S. I. Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment. J. Phys. Chem. C 2014, 118, 21258–21263.

    CAS  Google Scholar 

  78. Gutiérrez, H. R.; Perea-López, N.; Elias, A. L.; Berkdemir, A.; Wang, B.; Lv, R. T.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447–3454.

    Google Scholar 

  79. Hu, Z. L.; Avila, J.; Wang, X. Y.; Leong, J. F.; Zhang, Q.; Liu, Y. P.; Asensio, M. C.; Lu, J. P.; Carvalho, A.; Sow, C. H. et al. The role of oxygen atoms on excitons at the edges of monolayer WS2. Nano Lett. 2019, 79, 4641–4650.

    Google Scholar 

  80. Yuan, L.; Huang, L. B. Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale 2015, 7, 7402–7408.

    CAS  Google Scholar 

  81. Yu, Y. L.; Yu, Y. F.; Xu, C.; Barrette, A.; Gundogdu, K.; Cao, L. Y. Fundamental limits of exciton-exciton annihilation for light emission in transition metal dichalcogenide monolayers. Phys. Rev. B 2016, 93, 201111.

    Google Scholar 

  82. Yuan, L.; Wang, T.; Zhu, T.; Zhou, M. W.; Huang, L. B. Exciton dynamics, transport, and annihilation in atomically thin two-dimensional semiconductors. J. Phys. Chem. Lett. 2017, 8, 3371–3379.

    CAS  Google Scholar 

  83. Lee, Y.; Kim, J. Controlling lattice defects and inter-exciton interactions in monolayer transition metal dichalcogenides for efficient light emission. ACS Photonics 2018, 5, 4187–4194.

    CAS  Google Scholar 

  84. Lee, Y.; Ghimire, G.; Roy, S.; Kim, Y.; Seo, C.; Sood, A. K.; Jang, J. I.; Kim, J. Impeding exciton-exciton annihilation in monolayer WS2 by laser irradiation. ACS Photonics 2018, 5, 2904–2911.

    CAS  Google Scholar 

  85. Balog, R.; Jørgensen, B.; Nilsson, L.; Andersen, M.; Rienks, E.; Bianchi, M.; Fanetti, M.; Laegsgaard, E.; Baraldi, A.; Lizzit, S. et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 2010, 9, 315–319.

    CAS  Google Scholar 

  86. Zhang, Y. B.; Tang, T. T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459, 820–823.

    CAS  Google Scholar 

  87. Mao, N. N.; Chen, Y. F.; Liu, D. M.; Zhang, J.; Xie, L. M. Solvatochromic effect on the photoluminescence of MoS2 monolayers. Small 2013, 9, 1312–1315.

    CAS  Google Scholar 

  88. Scalise, E.; Houssa, M.; Pourtois, G.; Afanas’ev, V.; Stesmans, A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 2012, 5, 43–48.

    CAS  Google Scholar 

  89. Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305.

    Google Scholar 

  90. Matsunaga, M.; Higuchi, A.; He, G. C.; Yamada, T.; Kruger, P.; Ochiai, Y.; Gong, Y. J.; Vajtai, R.; Ajayan, P. M.; Bird, J. P. et al. Nanoscalebarrier formation induced by low-dose electron-beam exposure in ultrathin MoS2 transistors. ACS Nano 2016, 70, 9730–9737.

    Google Scholar 

  91. Komsa, H. P.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Phys. Rev. B 2013, 88, 035301.

    Google Scholar 

  92. Schuler, B.; Lee, J. H.; Kastl, C.; Cochrane, K. A.; Chen, C. T.; Refaely-Abramson, S.; Yuan, S. J.; Van Veen, E.; Roldan, R.; Borys, N. J. et al. How substitutional point defects in two-dimensional WS2 induce charge localization, spin-orbit splitting, and strain. ACS Nano 2019, 13, 10520–10534.

    CAS  Google Scholar 

  93. Huang, Y. L.; Chen, Y. F.; Zhang, W. J.; Quek, S. Y.; Chen, C. H.; Li, L. J.; Hsu, W. T.; Chang, W. H.; Zheng, Y. J.; Chen, W. et al. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun. 2015, 6, 6298.

    Google Scholar 

  94. Zhang, W. T.; Lin, Y.; Wang, Q.; Li, W. J.; Wang, Z. F.; Song, J. L. Q.; Li, X. D.; Zhang, L. J.; Zhu, L. X.; Xu, X. L. Well-hidden grain boundary in the monolayer MoS2 formed by a two-dimensional core-shell growth mode. ACS Nano 2017, 11, 10608–10615.

    CAS  Google Scholar 

  95. Azizi, A.; Zou, X. L.; Ercius, P.; Zhang, Z. H.; Elías, A. L.; Perea-López, N.; Stone, G.; Terrones, M.; Yakobson, B. I.; Alem, N. Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat. Commun. 2014, 5, 4867.

    CAS  Google Scholar 

  96. Liu, H. J.; Zheng, H.; Yang, F.; Jiao, L.; Chen, J. L.; Ho, W.; Gao, C. L.; Jia, J. F.; Xie, M. H. Line and point defects in MoSe2 bilayer studied by scanning tunneling microscopy and spectroscopy. ACS Nano 2015, 9, 6619–6625.

    CAS  Google Scholar 

  97. Dumcenco, D. O.; Kobayashi, H.; Liu, Z.; Huang, Y. S.; Suenaga, K. Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers. Nat. Commun. 2013, 4, 1351.

    Google Scholar 

  98. Duan, X. D.; Wang, C.; Fan, Z.; Hao, G. L.; Kou, L. Z.; Halim, U.; Li, H. L.; Wu, X. P.; Wang, Y. C.; Jiang, J. H. et al. Synthesis of WS2x Se2−2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 2016, 16, 264–269.

    CAS  Google Scholar 

  99. Feng, Q. L.; Zhu, Y. M.; Hong, J. H.; Zhang, M.; Duan, W. J.; Mao, N. N.; Wu, J. X.; Xu, H.; Dong, F. L.; Lin, F. et al. Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys. Adv. Mater. 2014, 26, 2648–2653.

    CAS  Google Scholar 

  100. Tan, C. L.; Lai, Z. C.; Zhang, H. Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials. Adv. Mater. 2017, 29, 1701392.

    Google Scholar 

  101. Li, H. L.; Duan, X. D.; Wu, X. P.; Zhuang, X. J.; Zhou, H.; Zhang, Q. L.; Zhu, X. L.; Hu, W.; Ren, P. Y.; Guo, P. F. et al. Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 2014, 136, 3756–3759.

    CAS  Google Scholar 

  102. Li, L. H.; Zheng, W. H.; Ma, C.; Zhao, H. P.; Jiang, F.; Ouyang, Y.; Zheng, B. Y.; Fu, X. W.; Fan, P.; Zheng, M. et al. Wavelength-tunable interlayer exciton emission at the near-infrared region in van der Waals semiconductor heterostructures. Nano Lett. 2020, 20, 3361–3368.

    CAS  Google Scholar 

  103. Amani, M.; Taheri, P.; Addou, R.; Ahn, G H.; Kiriya, D.; Lien, D. H.; Ager III, J. W.; Wallace, R. M.; Javey, A. Recombination kinetics and effects of superacid treatment in sulfur- and selenium-based transition metal dichalcogenides. Nano Lett. 2016, 16, 2786–2791.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2017YFA0205700 and 2019YFA0308000), the National Natural Science Foundation of China (NSFC) (Nos. 61774034, 91963130, 11704068, and 61705106), and Jiangsu Natural Science Foundation (No. BK20170694). The project is supported by “the Fundamental Research Funds for the Central Universities”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junpeng Lu or Zhenhua Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Wang, W., Lu, J. et al. How defects influence the photoluminescence of TMDCs. Nano Res. 14, 29–39 (2021). https://doi.org/10.1007/s12274-020-3037-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3037-9

Keywords

Navigation