Skip to main content
Log in

Complex RNA-DNA hybrid nanoshapes from iterative mix-and-match screening

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Hybrid nucleic acid nanostructures partition architectural and functional roles between ribonucleic acid (RNA) joints and deoxyribonucleic acid (DNA) connectors. Nanoshapes self-assemble from nucleic acid modules through synergistic stabilization of marginally stable base pairing interactions within circularly closed polygons. Herein, we report the development of hybrid nanoshapes that include multiple different RNA modules such as internal loop and three-way junction (3WJ) motifs. An iterative mix-and-match screening approach was used to identify suitable DNA connectors that furnished stable nanoshapes for combinations of different RNA modules. The resulting complex multicomponent RNA-DNA hybrid nanoshapes were characterized by atomic force microscopy (AFM) imaging. Our research provides proof of concept for modular design, assembly and screening of RNA-DNA hybrid nanoshapes as building blocks for complex extended nucleic acid materials with features at the sub-10 nm scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seeman, N. C.; Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 2017, 3, 17068.

    Article  Google Scholar 

  2. Jaeger, L.; Chworos, A. The architectonics of programmable RNA and DNA nanostructures. Curr. Opin. Struct. Biol. 2006, 16, 531–543.

    Article  CAS  Google Scholar 

  3. Jasinski, D.; Haque, F.; Binzel, D. W.; Guo, P. X. Advancement of the emerging field of RNA nanotechnology. ACS Nano 2017, 11, 1142–1164.

    Article  CAS  Google Scholar 

  4. Geary, C.; Rothemund, P. W. K.; Andersen, E. S. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 2014, 345, 799–804.

    Article  CAS  Google Scholar 

  5. Afonin, K. A.; Viard, M.; Martins, A. N.; Lockett, S. J.; Maciag, A. E.; Freed, E. O.; Heldman, E.; Jaeger, L.; Blumenthal, R.; Shapiro, B. A. Activation of different split functionalities on re-association of RNA-DNA hybrids. Nat. Nanotechnol. 2013, 8, 296–304.

    Article  CAS  Google Scholar 

  6. Afonin, K. A.; Desai, R.; Viard, M.; Kireeva, M. L.; Bindewald, E.; Case, C. L.; Maciag, A. E.; Kasprzak, W. K.; Kim, T.; Sappe, A. et al. Co-transcriptional production of RNA-DNA hybrids for simultaneous release of multiple split functionalities. Nucleic Acids Res. 2014, 42, 2085–2097.

    Article  CAS  Google Scholar 

  7. Agarwal, S.; Franco, E. Enzyme-driven assembly and disassembly of hybrid DNA-RNA nanotubes. J. Am. Chem. Soc. 2019, 141, 7831–7841.

    Article  CAS  Google Scholar 

  8. Ke, W. N.; Hong, E. P.; Saito, R. F.; Rangel, M. C.; Wang, J.; Viard, M.; Richardson, M.; Khisamutdinov, E. F.; Panigaj, M.; Dokholyan, N. V. et al. RNA-DNA fibers and polygons with controlled immunorecognition activate RNAi, FRET and transcriptional regulation of NF-κB in human cells. Nucleic Acids Res. 2019, 47, 1350–1361.

    Article  CAS  Google Scholar 

  9. Afonin, K. A.; Viard, M.; Kagiampakis, I.; Case, C. L.; Dobrovolskaia, M. A.; Hofmann, J.; Vrzak, A.; Kireeva, M.; Kasprzak, W. K.; KewalRamani, V. N. et al. Triggering of RNA interference with RNA-RNA, RNA-DNA, and DNA-RNA nanoparticles. ACS Nano 2015, 9, 251–259.

    Article  CAS  Google Scholar 

  10. Monferrer, A.; Zhang, D.; Lushnikov, A. J.; Hermann, T. Versatile kit of robust nanoshapes self-assembling from RNA and DNA modules. Nat. Commun. 2019, 10, 608.

    Article  CAS  Google Scholar 

  11. Chen, S.; Hermann, T. RNA-DNA hybrid nanoshapes that self-assemble dependent on ligand binding. Nanoscale 2020, 12, 3302–3307.

    Article  CAS  Google Scholar 

  12. Yurke, B.; Turberfield, A. J.; Mills, A. P., Jr.; Simmel, F. C.; Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 2000, 406, 605–608.

    Article  CAS  Google Scholar 

  13. Guo, P. X.; Zhang, C. L.; Chen, C. P.; Garver, K.; Trottier, M. Inter-RNA interaction of phage ε 29 pRNA to form a hexameric complex for viral DNA transportation. Mol. Cell 1998, 2, 149–155.

    Article  CAS  Google Scholar 

  14. Shu, D.; Shu, Y.; Haque, F.; Abdelmawla, S.; Guo, P. X. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat. Nanotechnol. 2011, 6, 658–667.

    Article  CAS  Google Scholar 

  15. Shu, Y.; Haque, F.; Shu, D.; Li, W.; Zhu, Z. Q.; Kotb, M.; Lyubchenko, Y.; Guo, P. X. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. RNA 2013, 19, 767–777.

    Article  CAS  Google Scholar 

  16. Khisamutdinov, E. F.; Jasinski, D. L.; Li, H.; Zhang, K. M.; Chiu, W.; Guo, P. X. Fabrication of RNA 3D nanoprisms for loading and protection of small RNAs and model drugs. Adv. Mater. 2016, 28, 10079–10087.

    Article  CAS  Google Scholar 

  17. Khisamutdinov, E. F.; Li, H.; Jasinski, D. L.; Chen, J.; Fu, J.; Guo, P. X. Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles. Nucleic Acids Res. 2014, 42, 9996–10004.

    Article  CAS  Google Scholar 

  18. Li, H.; Zhang, K. M.; Pi, F. M.; Guo, S. J.; Shlyakhtenko, L.; Chiu, W.; Shu, D.; Guo, P. X. Controllable self-assembly of RNA tetrahedrons with precise shape and size for cancer targeting. Adv. Mater. 2016, 28, 7501–7507.

    Article  CAS  Google Scholar 

  19. Hao, C. H.; Li, X.; Tian, C.; Jiang, W.; Wang, G. S.; Mao, C. D. Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage. Nat. Commun. 2014, 5, 3890.

    Article  CAS  Google Scholar 

  20. Schwarz-Schilling, M.; Dupin, A.; Chizzolini, F.; Krishnan, S.; Mansy, S. S.; Simmel, F. C. Optimized assembly of a multifunctional RNA-protein nanostructure in a cell-free gene expression system. Nano Lett. 2018, 18, 2650–2657.

    Article  CAS  Google Scholar 

  21. Hill, A. C.; Bartley, L. E.; Schroeder, S. J. Prohead RNA: A noncoding viral RNA of novel structure and function. WIREs RNA 2016, 7, 428–437.

    Article  CAS  Google Scholar 

  22. Xiao, F.; Demeler, B.; Guo, P. X. Assembly mechanism of the sixty-subunit nanoparticles via interaction of RNA with the reengineered protein connector of phi29 DNA-packaging motor. ACS Nano 2010, 4, 3293–3301.

    Article  CAS  Google Scholar 

  23. Xu, C. C.; Li, H.; Zhang, K. M.; Binzel, D. W.; Yin, H. R.; Chiu, W.; Guo, P. X. Photo-controlled release of paclitaxel and model drugs from RNA pyramids. Nano Res. 2019, 12, 41–48.

    Article  CAS  Google Scholar 

  24. Khisamutdinov, E. F.; Jasinski, D. L.; Guo, P. X. RNA as a boiling-resistant anionic polymer material to build robust structures with defined shape and stoichiometry. ACS Nano 2014, 8, 4771–4781.

    Article  CAS  Google Scholar 

  25. Parlea, L.; Bindewald, E.; Sharan, R.; Bartlett, N.; Moriarty, D.; Oliver, J.; Afonin, K. A.; Shapiro, B. A. Ring Catalog: A resource for designing self-assembling RNA nanostructures. Methods 2016, 103, 128–137.

    Article  CAS  Google Scholar 

  26. Kasprzak, W. K.; Ahmed, N. A.; Shapiro, B. A. Modeling ligand docking to RNA in the design of RNA-based nanostructures. Curr. Opin. Biotechnol. 2020, 63, 16–25.

    Article  CAS  Google Scholar 

  27. Afonin, K. A.; Bindewald, E.; Yaghoubian, A. J.; Voss, N.; Jacovetty, E.; Shapiro, B. A.; Jaeger, L. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat. Nanotechnol. 2010, 5, 676–682.

    Article  CAS  Google Scholar 

  28. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.

    Article  CAS  Google Scholar 

  29. Vantomme, G.; Meijer, E. W. The construction of supramolecular systems. Science 2019, 363, 1396–1397.

    Article  CAS  Google Scholar 

  30. Shlyakhtenko, L. S.; Gall, A. A.; Filonov, A.; Cerovac, Z.; Lushnikov, A.; Lyubchenko, Y. L. Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy 2003, 97, 279–287.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation, Chemical Measurement & Imaging Program, grant number CHE CMI 1608287. We thank A. J. Lushnikov for helping with AFM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hermann.

Additional information

Conflict of interests

The authors declare no conflict of interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Zhang, Z., Alforque, E. et al. Complex RNA-DNA hybrid nanoshapes from iterative mix-and-match screening. Nano Res. 14, 46–51 (2021). https://doi.org/10.1007/s12274-020-3008-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3008-1

Keywords

Navigation