Skip to main content
Log in

Fabrication and manipulation of nanosized graphene homojunction with atomically-controlled boundaries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Controlling the atomic configurations of structural defects in graphene nanostructures is crucial for achieving desired functionalities. Here, we report the controlled fabrication of high-quality single-crystal and bicrystal graphene nanoislands (GNI) through a unique top-down etching and post-annealing procedure on a graphite surface. Low-temperature scanning tunneling microscopy (STM) combined with density functional theory calculations reveal that most of grain boundaries (GBs) formed on the bicrystal GNIs are 5-7-5-7 GBs. Two nanodomains separated by a 5-7-5-7 GB are AB stacking and twisted stacking with respect to the underlying graphite substrate and exhibit distinct electronic properties, forming a graphene homojunction. In addition, we construct homojunctions with alternative AB/twisted stacking nanodomains separated by parallel 5-7-5-7 GBs. Remarkably, the stacking orders of homojunctions are manipulated from AB/twist into twist/twist type through a STM tip. The controllable fabrication and manipulation of graphene homojunctions with 5-7-5-7 GBs and distinct stacking orders open an avenue for the construction of GBs-based devices in valleytronics and twistronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mishra, S.; Beyer, D.; Eimre, K.; Kezilebieke, S.; Berger, R.; Gröning, O.; Pignedoli, C. A.; Müllen, K.; Liljeroth, P. et al. Topological frustration induces unconventional magnetism in a nanographene. Nat. Nanotechnol. 2020, 15, 81.

    Article  CAS  Google Scholar 

  2. Cox, J. D.; García de Abajo, F. J. Nonlinear interactions between free electrons and nanographenes. Nano Lett. 2020, 20, 4792–4800.

    Article  CAS  Google Scholar 

  3. Cox, J. D.; de Abajo, F. J. G Single-plasmon thermo-optical switching in graphene. Nano Lett. 2019, 19, 3743–3750.

    Article  CAS  Google Scholar 

  4. Su, J.; Telychko, M.; Hu, P.; Macam, G.; Mutombo, P.; Zhang, H. J.; Bao, Y.; Cheng, F.; Huang, Z. Q.; Qiu, Z. Z. et al. Atomically precise bottom-up synthesis of π-extended [5]triangulene. Sci. Adv. 2019, 5, eaav7717.

    Article  CAS  Google Scholar 

  5. Chen, H.; Que, Y. D.; Tao, L.; Zhang, Y. Y.; Lin, X.; Xiao, W. D.; Wang, D. F.; Du, S. X.; Pantelides, S. T.; Gao, H. J. Recovery of edge states of graphene nanoislands on an iridium substrate by silicon intercalation. Nano Res. 2018, 11, 3722–3729.

    Article  CAS  Google Scholar 

  6. Pavliček, N.; Mistry, A.; Majzik, Z.; Moll, N.; Meyer, G.; Fox, D. J.; Gross, L. Synthesis and characterization of triangulene. Nat. Nanotechnol. 2017, 12, 308–311.

    Article  CAS  Google Scholar 

  7. Leicht, P.; Zielke, L.; Bouvron, S.; Moroni, R.; Voloshina, E.; Hammerschmidt, L.; Dedkov, Y. S.; Fonin, M. In situ fabrication of quasi-free-standing epitaxial graphene nanoflakes on gold. ACS Nano 2014, 8, 3735–3742.

    Article  CAS  Google Scholar 

  8. Phark, S. H.; Borme, J.; Vanegas, A. L.; Corbetta, M.; Sander, D.; Kirschner, J. Direct observation of electron confinement in epitaxial graphene nanoislands. ACS Nano 2011, 5, 8162–8166.

    Article  CAS  Google Scholar 

  9. Fernández-Rossier, J.; Palacios, J. J. Magnetism in graphene nanoislands. Phys. Rev. Lett. 2007, 99, 177204.

    Article  CAS  Google Scholar 

  10. Feng, X. F.; Kwon, S.; Park, J. Y.; Salmeron, M. Superlubric sliding of graphene nanoflakes on graphene. ACS Nano 2013, 7, 1718–1724.

    Article  CAS  Google Scholar 

  11. Zhu, S. Z.; Li, T. Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. ACS Nano 2014, 8, 2864–2872.

    Article  CAS  Google Scholar 

  12. Chen, H.; Zhang, X. L.; Zhang, Y. Y.; Wang, D. F.; Bao, D. L.; Que, Y. D.; Xiao, W. D.; Du, S. X.; Ouyang, M.; Pantelides, S. T. et al. Atomically precise, custom-design origami graphene nanostructures. Science 2019, 365, 1036–1040.

    Article  CAS  Google Scholar 

  13. Wilson, P. M.; Mbah, G. N.; Smith, T. G.; Schmidt, D.; Lai, R. Y.; Hofmann, T.; Sinitskii, A. Three-dimensional periodic graphene nanostructures. J. Mater. Chem. C 2014, 2, 1879–1886.

    Article  CAS  Google Scholar 

  14. Heerema, S. J.; Dekker, C. Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 2016, 11, 127–136.

    Article  CAS  Google Scholar 

  15. Majee, A. K.; Kommini, A.; Aksamija, Z. Electronic transport and thermopower in 2D and 3D heterostructures—A theory perspective. Ann. Phys. 2019, 531, 1800510.

    Article  CAS  Google Scholar 

  16. Yazyev, O. V.; Louie, S. G. Electronic transport in polycrystalline graphene. Nat. Mater. 2010, 9, 806–809.

    Article  CAS  Google Scholar 

  17. Gunlycke, D.; White, C. T. Graphene valley filter using a line defect. Phys. Rev. Lett. 2011, 106, 136806.

    Article  CAS  Google Scholar 

  18. Chen, J. H.; Autès, G.; Alem, N.; Gargiulo, F.; Gautam, A.; Linck, M.; Kisielowski, C.; Yazyev, O. V.; Louie, S. G.; Zettl, A. Controlled growth of a line defect in graphene and implications for gate-tunable valley filtering. Phys. Rev. B 2014, 89, 121407(R).

    Article  CAS  Google Scholar 

  19. Xu, J.; Yuan, G. W.; Zhu, Q.; Wang, J. W.; Tang, S.; Gao, L. B. Enhancing the strength of graphene by a denser grain boundary. ACS Nano 2018, 12, 4529–4535.

    Article  CAS  Google Scholar 

  20. Alexandre, S. S.; Lúcio, A. D.; Neto, A. H. C.; Nunes, R. W. Correlated magnetic states in extended one-dimensional defects in graphene. Nano Lett. 2012, 12, 5097–5102.

    Article  CAS  Google Scholar 

  21. Kou, L. Z.; Tang, C.; Guo, W. L.; Chen, C. F. Tunable magnetism in strained graphene with topological line defect. ACS Nano 2011, 5, 1012–1017.

    Article  CAS  Google Scholar 

  22. Wu, H. C.; Chaika, A. N.; Hsu, M. C.; Huang, T. W.; Abid, M.; Abid, M.; Aristov, V. Y.; Molodtsova, O. V.; Babenkov, S. V.; Niu, Y. R. et al. Large positive in-plane magnetoresistance induced by localized states at nanodomain boundaries in graphene. Nat. Commun. 2017, 8, 14453.

    Article  CAS  Google Scholar 

  23. Gunlycke, D.; Vasudevan, S.; White, C. T. Confinement, transport gap, and valley polarization in graphene from two parallel decorated line defects. Nano Lett. 2013, 13, 259–263.

    Article  CAS  Google Scholar 

  24. Biró, L. P.; Lambin, P. Grain boundaries in graphene grown by chemical vapor deposition. New J. Phys. 2013, 15, 035024.

    Article  CAS  Google Scholar 

  25. Tison, Y.; Lagoute, J.; Repain, V.; Chacon, C.; Girard, Y.; Joucken, F.; Sporken, R.; Gargiulo, F.; Yazyev, O. V.; Rousset, S. Grain boundaries in graphene on SiC(0001) substrate. Nano Lett. 2014, 14, 6382–6386.

    Article  CAS  Google Scholar 

  26. Yang, B.; Xu, H.; Lu, J.; Loh, K. P. Periodic grain boundaries formed by thermal reconstruction of polycrystalline graphene film. J. Am. Chem. Soc. 2014, 136, 12041–12046.

    Article  CAS  Google Scholar 

  27. Chen, Y. B.; Sun, J. Y.; Gao, J. F.; Du, F.; Han, Q.; Nie, Y. F.; Chen, Z. L.; Bachmatiuk, A.; Priydarshi, M. K.; Ma, D. L. et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture. Adv. Mater. 2015, 27, 7839–7846.

    Article  CAS  Google Scholar 

  28. Yazyev, O. V.; Louie, S. G Topological defects in graphene: Dislocations and grain boundaries. Phys. Rev. B 2010, 81, 195420.

    Article  CAS  Google Scholar 

  29. Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K. Chiral tunnelling and the klein paradox in graphene. Nat. Phys. 2006, 2, 620–625.

    Article  CAS  Google Scholar 

  30. Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

    Article  CAS  Google Scholar 

  31. Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

    Article  CAS  Google Scholar 

  32. Sharpe, A. L.; Fox, E. J.; Barnard, A. W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M. A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608.

    Article  CAS  Google Scholar 

  33. Lin, J. H.; Fang, W. J.; Zhou, W.; Lupini, A. R.; Idrobo, J. C.; Kong, J.; Pennycook, S. J.; Pantelides, S. T. AC/AB stacking boundaries in bilayer graphene. Nano Lett. 2013, 13, 3262–3268.

    Article  CAS  Google Scholar 

  34. Kim, C. J.; Sánchez-Castillo, A.; Ziegler, Z.; Ogawa, Y.; Noguez, C.; Park, J. Chiral atomically thin films. Nat. Nanotechnol. 2016, 11, 520–524.

    Article  CAS  Google Scholar 

  35. Hikino, S.; Yunoki, S. Anomalous enhancement of spin Hall conductivity in a superconductor/normal-metal junction. Phys. Rev. B 2011, 84, 020512(R).

    Article  CAS  Google Scholar 

  36. Yang, R.; Zhang, L. C.; Wang, Y.; Shi, Z. W.; Shi, D. X.; Gao, H. J.; Wang, E. G.; Zhang, G. Y. An anisotropic etching effect in the graphene basal plane. Adv. Mater. 2010, 22, 4014–4019.

    Article  CAS  Google Scholar 

  37. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  38. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

    Article  CAS  Google Scholar 

  39. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  40. Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sokrates T. Pantelides and Min Ouyang for constructive suggestions. We acknowledge financial support from the National Key Research & Development Projects of China (Nos. 2016YFA0202300 and 2019YFA0308500), the National Natural Science Foundation of China (Nos. 61888102, 51872284, 51922011, 11974045, and 51761135130), the CAS Pioneer Hundred Talents Program, Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB30000000), and China Postdoctoral Science Foundation (Nos. 2018M641511, 2018M630217, and 2019T120148). A portion of the research was performed in CAS Key Laboratory of Vacuum Physics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shixuan Du or Hong-Jun Gao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Bao, DL., Wang, D. et al. Fabrication and manipulation of nanosized graphene homojunction with atomically-controlled boundaries. Nano Res. 13, 3286–3291 (2020). https://doi.org/10.1007/s12274-020-3004-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3004-5

Keywords

Navigation