Skip to main content
Log in

Single-atom site catalysts for environmental catalysis

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In recent decades, the environmental protection and long-term sustainability have become the focus of attention due to the increasing pollution generated by the intense industrialization. To overcome these issues, environmental catalysis has increasingly been used to solve the negative impact of pollutants emission on the global environment and human health. Supported platinum-metal-group (PGM) materials are commonly utilized as the state-of-the-art catalysts to eliminate gaseous pollutants but large quantities of PGMs are required. By comparison, single-atom site catalysts (SACs) have attracted much attention in catalysis owing to their 100% atom efficiency and unique catalytic performances towards various reactions. Over the past decade, we have witnessed burgeoning interests of SACs in heterogeneous catalysis. However, to the best of our knowledge, the systematic summary and analysis of SACs in catalytic elimination of environmental pollutants has not yet been reported. In this paper, we summarize and discuss the environmental catalysis applications of SACs. Particular focus was paid to automotive and stationary emission control, including model reaction (CO oxidation, NO reduction and hydrocarbon oxidation), overall reaction (three-way catalytic and diesel oxidation reaction), elimination of volatile organic compounds (formaldehyde, benzene, and toluene), and removal/decomposition of other pollutants (Hg0 and SO3). Perspectives related to further challenges, directions and design strategies of single-atom site catalysts in environmental catalysis were also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han, L. P.; Cai, S. X.; Gao M.; Hasegawa J. Y.; Wang, P. L.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects. Chem. Rev. 2019, 119, 10916–10976.

    CAS  Google Scholar 

  2. Beale, A. M.; Gao, F.; Lezcano-Gonzalez, I.; Peden, C. H. F.; Szanyi, J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 2015, 44, 7371–7405.

    CAS  Google Scholar 

  3. Heal, M. R.; Kumar, P.; Harrison, R. M. Particles, air quality, policy and health. Chem. Soc. Rev. 2012, 41, 6606–6630.

    CAS  Google Scholar 

  4. Lee, W.; Bae, G. N. Removal of elemental mercury (Hg(0)) by nanosized V2O5/TiO2 catalysts. Environ. Sci. Technol. 2009, 43, 1522–1527.

    CAS  Google Scholar 

  5. Min, B. K.; Friend, C. M. Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation. Chem. Rev. 2007, 107, 2709–2724.

    CAS  Google Scholar 

  6. Cohen, R. C.; Murphy, J. G. Photochemistry of NO2 in earth’s stratosphere: Constraints from observations. Chem. Rev. 2003, 103, 4985–4998.

    CAS  Google Scholar 

  7. Lizzio, A. A.; DeBarr, J. A. Mechanism of SO2 removal by carbon. Energy Fuels 1997, 11, 284–291.

    CAS  Google Scholar 

  8. He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. P. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471–4568.

    CAS  Google Scholar 

  9. Grassian, V. H. Environmental Catalysis; CRC Press: Boca Raton, 2005.

    Google Scholar 

  10. Deng, H.; Kang, S. Y.; Ma, J. Z.; Zhang, C. B.; He, H. Silver incorporated into cryptomelane-type manganese oxide boosts the catalytic oxidation of benzene. Appl. Catal. B: Environ. 2018, 239, 214–222.

    CAS  Google Scholar 

  11. Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation. Nano Res. 2011, 4, 83–91.

    CAS  Google Scholar 

  12. Li, L. C.; Zhang, N. Q.; Huang, X.; Liu, Y.; Li, Y. Y.; Zhang, G Z.; Song, L. Y.; He, H. Hydrothermal stability of core-shell Pd@Ce0.5Zr0.5O2/Al2O3 catalyst for automobile three-way reaction. ACS Catal. 2018, 8, 3222–3231.

    CAS  Google Scholar 

  13. Liang, Y. J.; Liu, Y. X.; Deng, J. G.; Zhang, K. F.; Hou, Z. Q.; Zhao, X. T.; Zhang, X.; Zhang, K. Y.; Wei, R. J.; Dai, H. X. Coupled palladium–tungsten bimetallic nanosheets/TiO2 hybrids with enhanced catalytic activity and stability for the oxidative removal of benzene. Environ. Sci. Technol. 2019, 53, 5926–5935.

    CAS  Google Scholar 

  14. Li, L. C.; Zhang, N. Q.; He, H.; Zhang, G. Z.; Song, L. Y.; Qiu W. G. Shape-controlled synthesis of Pd nanocrystals with exposed {110} facets and their catalytic applications. Catal. Today 2019, 327, 28–36.

    CAS  Google Scholar 

  15. Zhang, N. Q.; Li, L. C.; Wu, R.; Song, L. Y.; Zheng, L. R.; Zhang, G. Z.; He, H. Activity enhancement of Pt/MnOx catalyst by novel β-MnO2 for low-temperature CO oxidation: Study of the CO–O2 competitive adsorption and active oxygen species. Catal. Sci. Technol. 2019, 9, 347–354.

    CAS  Google Scholar 

  16. Schauermann, S.; Hoffmann, J.; Johánek, V.; Hartmann, J.; Libuda, J.; Freund, H. J. Catalytic activity and poisoning of specific sites on supported metal nanoparticles. Angew. Chem., Int. Edit. 2002, 41, 2532–2535.

    CAS  Google Scholar 

  17. Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

    CAS  Google Scholar 

  18. Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

    CAS  Google Scholar 

  19. Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.

    CAS  Google Scholar 

  20. Zhang, N. Q.; Li, L. C.; Chu, Y.; Zheng, L. R.; Sun, S. R.; Zhang, G. Z.; He, H.; Zhao, J. S. High Pt utilization efficiency of electro-catalysts for oxygen reduction reaction in alkaline media. Catal. Today 2019, 332, 101–108.

    CAS  Google Scholar 

  21. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    CAS  Google Scholar 

  22. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    CAS  Google Scholar 

  23. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    CAS  Google Scholar 

  24. Xu, Q.; Guo, C. X.; Tian, S. B.; Zhang, J.; Chen, W. X.; Cheong, W. C.; Gu, L.; Zheng, L. R.; Xiao, J. P.; Liu, Q. et al. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Sci. China Mater. 2020, 63, 972–981.

    CAS  Google Scholar 

  25. Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

    CAS  Google Scholar 

  26. Li, Z.; Chen Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nat. Chem., 2020, 12, 764–772.

    Google Scholar 

  27. Tian, S. B.; Hu, M.; Xu, Q.; Gong W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater., in press, DOI: https://doi.org/10.1007/s40843-020-1443-8.

  28. Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem, Int. Ed. 2020, 59, 10651–10657.

    CAS  Google Scholar 

  29. Mao, J. J.; He, C. T.; Pei, J. J.; Liu, Y.; Li, J.; Chen, W. X.; He, D. S.; Wang, D. S.; Li, Y. D. Isolated Ni atoms dispersed on Ru nanosheets: High-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett. 2020, 20, 3442–3448.

    CAS  Google Scholar 

  30. Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

    CAS  Google Scholar 

  31. Zhang, J.; Wang, Z. Y.; Chen, W. X.; Xiong, Y.; Cheong, W. C.; Zheng, L. R.; Yan, W. S.; Gu, L.; Chen, C.; Peng, Q. et al. Tuning polarity of Cu-O bond in heterogeneous Cu catalyst to promote additive-free hydroboration of alkynes. Chem 2020, 6, 725–737.

    CAS  Google Scholar 

  32. Ren, S.; Yu, Q.; Yu, X. H.; Rong, P.; Jiang, L. Y.; Jiang, J. C. Graphene-supported metal single-atom catalysts: A concise review. Sci. China Mater. 2020, 6, 903–920.

    Google Scholar 

  33. Chen, L. G.; Liang, X.; Li, X. T.; Pei, J. J.; Lin, H.; Jia, D. Z.; Chen, W. X.; Wang, D. S.; Li, Y. D. Promoting electrocatalytic methanol oxidation of platinum nanoparticles by cerium modification. Nano Energy 2020, 73, 104784.

    CAS  Google Scholar 

  34. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    CAS  Google Scholar 

  35. Feng, Q. C.; Zhao, S.; Xu, Q.; Chen, W. X.; Tian, S. B.; Wang, Y. S.; Yan, W. S.; Luo, J.; Wang, D. S.; Li, Y. D. Mesoporous nitrogen-doped carbon-nanosphere-supported isolated single-atom Pd catalyst for highly efficient semihydrogenation of acetylene. Adv. Mater. 2019, 31, 1901024.

    Google Scholar 

  36. Lin, R.; Ma, X. L.; Cheong, W. C.; Zhang, C.; Zhu, W.; Pei, J. J.; Zhang, K. Y.; Wang, B.; Liang, S. Y.; Liu, Y. X. et al. PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Res. 2019, 12, 2866–2871.

    CAS  Google Scholar 

  37. Zhang, L. F.; Zhao, W. H.; Zhang, W. H.; Chen, J.; Hu, Z. P. gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction. Nano Res. 2019, 12, 1181–1186.

    CAS  Google Scholar 

  38. Fu, N. H.; Liang, X.; Li, Z.; Chen, W. X.; Wang, Y.; Zheng, L. R.; Zhang, Q. H.; Chen, C.; Wang, D. S.; Peng, Q. et al. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 2020, 13, 947–951.

    CAS  Google Scholar 

  39. Liu, K. P.; Tang, Y.; Yu, Z. Y.; Ge, B. H.; Ren, G. H.; Ren, Y. Q.; Su, Y. J.; Zhang, J. C.; Sun, X. C.; Chen, Z. Q. et al. High-loading and thermally stable Pt1/MgAl1.2Fe0.8O4 single-atom catalysts for high-temperature applications. Sci. China Mater. 2020, 63, 949–958.

    CAS  Google Scholar 

  40. Zhang, Z.; Ma, C.; Tu, Y. C.; Si, R.; Wei, J.; Zhang, S. H.; Wang, Z.; Li, J. F.; Wang, Y.; Deng, D. H. Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Res. 2019, 12, 2313–2317.

    CAS  Google Scholar 

  41. Ye, X. X.; Wang, H. W.; Lin, Y.; Liu, X. Y.; Cao, L. N.; Gu, J.; Lu, J. L. Insight of the stability and activity of platinum single atoms on ceria. Nano Res. 2019, 12, 1401–1409.

    CAS  Google Scholar 

  42. Li, H. N.; Cao, C. Y.; Liu, J.; Shi, Y.; Si, R.; Gu, L.; Song, W. G. Cobalt single atoms anchored on N-doped ultrathin carbon nanosheets for selective transfer hydrogenation of nitroarenes. Sci. China Mater. 2019, 62, 1306–1314.

    CAS  Google Scholar 

  43. Zhao, S. Z.; Wen, Y. F.; Liu, X. J.; Pen, X. Y.; Lü, F.; Gao, F. Y.; Xie, X. Z.; Du, C. C.; Yi, H. H.; Kang, D. J. et al. Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Res. 2020, 13, 1544–1551.

    CAS  Google Scholar 

  44. Yan, H.; Yang, C.; Shao, W. P.; Cai, L. H.; Wang, W. W.; Jin, Z.; Jia, C. J. Construction of stabilized bulk-nano interfaces for highly promoted inverse CeO2/Cu catalyst. Nat. Commun. 2019, 10, 3470.

    Google Scholar 

  45. Sun, X. H.; Suarez, A. I. O.; Meijerink, M.; van Deelen, T.; Ould-Chikh, S.; Zečević, J.; de Jong, K. P.; Kapteijn, F.; Gascon, J. Manufacture of highly loaded silica-supported cobalt Fischer-Tropsch catalysts from a metal organic framework. Nat. Commun. 2017, 8, 1680.

    Google Scholar 

  46. Ye, C. L.; Peng, M.; Wang, Y. H.; Zhang, N. Q.; Wang, D. S.; Jiao, M. L.; Miller, J. T. Surface hexagonal Pt1Sn1 intermetallic on Pt nanoparticles for selective propane dehydrogenation. ACS Appl. Mater. Interfaces 2020, 12, 25903–25909.

    CAS  Google Scholar 

  47. Jiang, P.; Chen, S.; Wang, C.; Wang, D.; Diao, J.; Cao, Z.; Lin, Z.; Luo, Q.; Lu, J.; Huang, H. et al. Atomically dispersed Fe-N-S-C anchored on pomegranate-shaped carbon spheres for oxygen reduction reaction and all-solid-state zinc-air battery. Mater. Today Sustain. 2020, 9, 100039.

    Google Scholar 

  48. Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938.

    CAS  Google Scholar 

  49. Huang, Z. W.; Gu, X.; Cao, Q. Q.; Hu, P. P.; Hao, J. M.; Li, J. H.; Tang, X. F. Catalytically active single-atom sites fabricated from silver particles. Angew. Chem. Int., Ed. 2012, 51, 4198–4203.

    CAS  Google Scholar 

  50. Wang, L.; Zhang, S. R.; Zhu, Y.; Patlolla, A.; Shan, J. J.; Yoshida, H.; Takeda, S.; Frenkel, A. I.; Tao, F. Catalysis and in situ studies of Rh1/Co3O4 nanorods in reduction of NO with H2. ACS Catal. 2013, 3, 1011–1019.

    CAS  Google Scholar 

  51. Peterson, E. J.; DeLaRiva; A. T.; Lin, S.; Johnson, R. S.; Guo, H.; Miller, J. T.; Kwak, J. H.; Peden, C. H. F.; Kiefer, B.; Allard, L. F. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 2014, 5, 4885.

    CAS  Google Scholar 

  52. Zhang, S. R.; Nguyen, L.; Liang, J. X.; Shan, J. J.; Liu, J. Y.; Frenkel, A. I.; Patlolla, A.; Huang, W. X.; Li, J.; Tao, F. Catalysis on singly dispersed bimetallic sites. Nat. Commun. 2015, 6, 7938.

    CAS  Google Scholar 

  53. Lin, J.; Qiao, B. T.; Li, N.; Li, L.; Sun, X. C.; Liu, J. Y.; Wang, X. D.; Zhang, T. Little do more: A highly effective Pt1/FeOx single-atom catalyst for the reduction of NO by H2. Chem. Commun. 2015, 51, 7911–7914.

    CAS  Google Scholar 

  54. Jones, J.; Xiong, H. F.; DeLaRiva, A.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernandez, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

    CAS  Google Scholar 

  55. Nguyen, L.; Zhang, S. R.; Wang, L.; Li, Y. Y.; Yoshida, H.; Patlolla, A.; Takeda, S.; Frenkel, A. I.; Tao, F. Reduction of nitric oxide with hydrogen on catalysts of singly dispersed bimetallic sites Pt1Com and Pd1Con. ACS Catal. 2016, 6, 840–850.

    CAS  Google Scholar 

  56. Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernández, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.

    CAS  Google Scholar 

  57. Chen, Y. X.; Gao, J. Y.; Huang, Z. W.; Zhou, M. J.; Chen, J. X.; Li, C.; Ma, Z.; Chen, J. M.; Tang, X. F. Sodium rivals silver as singleatom active centers for catalyzing abatement of formaldehyde. Environ. Sci. Technol. 2017, 51, 7084–7090.

    CAS  Google Scholar 

  58. Jeong, H.; Lee, G.; Kim, B. S.; Bae, J.; Han, J. W.; Lee, H. Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 2018, 140, 9558–9565.

    CAS  Google Scholar 

  59. Yang, W. J.; Gao, Z. Y.; Ding, X. L.; Lv, G.; Yan, W. P. The adsorption characteristics of mercury species on single atom iron catalysts with different graphene-based substrates. Appl. Surf. Sci. 2018, 455, 940–951.

    CAS  Google Scholar 

  60. Nigam, S.; Majumder, C. Single atom alloy catalyst for SO3 decomposition: Enhancement of platinum catalyst’s performance by Ag atom embedding. Nanoscale 2018, 10, 20599–20610.

    CAS  Google Scholar 

  61. Yang, K.; Liu, Y. X.; Deng, J. G; Zhao, X. T.; Yang, J.; Han, Z.; Hou, Z. Q.; Dai, H. X. Three-dimensionally ordered mesoporous iron oxide-supported single-atom platinum: Highly active catalysts for benzene combustion. Appl. Catal. B: Environ. 2019, 244, 650–659.

    CAS  Google Scholar 

  62. Zhang, Y.; Liu, Y. X.; Xie, S. H.; Huang, H. B.; Guo, G. S.; Dai, H. X.; Deng, J. G. Supported ceria-modified silver catalysts with high activity and stability for toluene removal. Environ. Int. 2019, 128, 335–342.

    CAS  Google Scholar 

  63. Hoang, S.; Guo, Y. B.; Binder, A. J.; Tang, W. X.; Wang, S. B.; Liu, J. Y.; Tran, H.; Lu, X. X.; Wang, Y.; Ding, Y. et al. Activating low-temperature diesel oxidation by single-atom Pt on TiO2 nanowire array. Nat. Commun. 2020, 11, 1062.

    CAS  Google Scholar 

  64. Wang, F.; Ma, J. Z.; Xin, S. H.; Wang, Q.; Xu, J.; Zhang, C. B.; He, H.; Cheng Z. X. Resolving the puzzle of single-atom silver dispersion on nanosized γ-Al2O3 surface for high catalytic performance. Nat. Commun. 2020, 11, 529.

    CAS  Google Scholar 

  65. Qu, W. Y.; Liu, X. N.; Chen, J. X.; Dong, Y. Y.; Tang, X. F.; Chen, Y. X. Single-atom catalysts reveal the dinuclear characteristic of active sites in NO selective reduction with NH3. Nat. Commun. 2020, 11, 1532.

    CAS  Google Scholar 

  66. Jeong, H.; Kwon, O.; Kim, B. S.; Bae, J.; Shin, S.; Kim, H. E.; Kim, J.; Lee, H. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 2020, 3, 368–375.

    CAS  Google Scholar 

  67. Kunwar, D.; Zhou, S. L.; DeLaRiva, A.; Peterson, E. J.; Xiong, H. F.; Pereira-Hernández, X. I.; Purdy, S. C.; Ter Veen, R.; Brongersma, H. H.; Miller, J. T. et al. Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 2019, 9, 3978–3990.

    CAS  Google Scholar 

  68. Beniya, A.; Higashi, S. Towards dense single-atom catalysts for future automotive applications. Nat. Catal. 2019, 2, 590–602.

    Google Scholar 

  69. Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

    Google Scholar 

  70. Zhang, H. Y.; Sui, S. H.; Zheng, X. M.; Cao, R. R.; Zhang, P. Y. One-pot synthesis of atomically dispersed Pt on MnO2 for efficient catalytic decomposition of toluene at low temperatures. Appl. Catal. B: Environ. 2019, 257, 117878.

    CAS  Google Scholar 

  71. Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    CAS  Google Scholar 

  72. Liu, J. Y. Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34–59.

    CAS  Google Scholar 

  73. Ye, C. L.; Zhang, N. Q.; Wang, D. S.; Li, Y. D. Single atomic site catalysts: Synthesis, characterization, and applications. Chem. Commun. 2020, 56, 7687–7697.

    CAS  Google Scholar 

  74. Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-Dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.

    CAS  Google Scholar 

  75. Li, X. N.; Yang, X. F.; Huang, Y. Q.; Zhang, T.; Liu, B. Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 2019, 31, 1902031.

    CAS  Google Scholar 

  76. Xin, Y.; Zhang, N. N.; Lv, Y. N.; Wang, J.; Li, Q.; Zhang, Z. L. From nanoparticles to single atoms for Pt/CeO2: Synthetic strategies, characterizations and applications. J. Rare Earths 2020, 38, 850–862.

    CAS  Google Scholar 

  77. Chen, Y. X.; Huang, Z. W.; Ma, Z.; Chen, J. M.; Tang, X. F. Fabrication, characterization, and stability of supported single-atom catalysts. Catal. Sci. Technol. 2017, 7, 4250–4258.

    CAS  Google Scholar 

  78. Twigg, M. V. Progress and future challenges in controlling automotive exhaust gas emissions. Appl. Catal. B: Environ. 2007, 70, 2–15.

    CAS  Google Scholar 

  79. Wang, J. H.; Chen, H.; Hu, Z. C.; Yao, M. F.; Li, Y. D. A review on the Pd-based three-way catalyst. Catal. Rev. 2015, 57, 79–144.

    CAS  Google Scholar 

  80. China vehicle environmental management annual report (2018) [Online]. http://www.gov.cn/guoqing/2019-04/09/content_5380744.htm.

  81. Cohn, J. G. Catalytic converters for exhaust emission control of commercial equipment powered by internal combustion engines. Environ. Health Persp. 1975, 10, 159–164.

    CAS  Google Scholar 

  82. Zhang, N. Q.; Li, L. C.; Guo, Y. Z.; He, J. D.; Wu, R.; Song, L. Y.; Zhang, G. Z.; Zhao, J. S.; Wang, D. S.; He, H. A MnO2-based catalyst with H2O resistance for NH3-SCR: Study of catalytic activity and reactants-H2O competitive adsorption. Appl. Catal. B: Environ. 2020, 270, 118860.

    CAS  Google Scholar 

  83. Zhang, N. Q.; Li, L. C.; Zhang, B. B.; Sun, Y. M.; Song, L. Y.; Wu, R.; He, H. Polytetrafluoroethylene modifying: A low cost and easy way to improve the H2O resistance ability over MnOx for low-temperature NH3-SCR. J. Environ. Chem. Eng. 2019, 7, 103044.

    CAS  Google Scholar 

  84. Wang, J.; You, R.; Zhao, C.; Zhang, W.; Liu, W.; Fu, X. P.; Li, Y. Y.; Zhou, F. Y.; Zheng, X. S.; Xu, Q. et al. N-coordinated dual-Metal single-Site catalyst for low-temperature CO oxidation. ACS Catal. 2020, 10, 2754–2761.

    CAS  Google Scholar 

  85. Lin, Z. Z. Graphdiyne-supported single-atom Sc and Ti catalysts for high-efficient CO oxidation. Carbon 2016, 108, 343–350.

    CAS  Google Scholar 

  86. Lin, J.; Wang, X. D.; Zhang, T. Recent progress in CO oxidation over Pt-group-metal catalysts at low temperatures. Chin. J. Catal. 2016, 37, 1805–1813.

    CAS  Google Scholar 

  87. Li, L. C.; Liu, X. J.; He, H.; Zhang, N. Q.; Liu, Z. W.; Zhang, G. Z. A novel two-dimensional MgO-h-BN nanomaterial supported Pd catalyst for CO oxidation reaction. Catal. Today 2019, 332, 214–221.

    CAS  Google Scholar 

  88. Zhang, Z. L.; Fan, Y. Z.; Xin, Y.; Li, Q.; Li, R. R.; Anderson, J. A.; Zhang, Z. L. Improvement of air/fuel ratio operating window and hydrothermal stability for Pd-only three-way catalysts through a Pd-Ce2Zr2O8 superstructure interaction. Environ. Sci. Technol. 2015, 49, 7989–7995.

    CAS  Google Scholar 

  89. Goto, Y.; Morikawa, A.; Iwasaki, M.; Miura, M.; Tanabe, T. Enhanced oxygen storage capacity of cation-ordered cerium–zirconium oxide induced by titanium substitution. Chem. Commun. 2018, 54, 3528–3531.

    CAS  Google Scholar 

  90. Li, P.; Chen, X. Y.; Li, Y. D.; Schwank, J. W. A review on oxygen storage capacity of CeO2-based materials: Influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control. Catal. Today 2019, 327, 90–115.

    CAS  Google Scholar 

  91. Yoo, M.; Yu, Y. S.; Ha, H.; Lee, S.; Choi, J. S.; Oh, S.; Kang, E.; Choi, H.; An, H.; Lee, K. S. et al. A tailored oxide interface creates dense Pt single-atom catalysts with high catalytic activity. Energy Environ. Sci. 2020, 13, 1231–1239.

    CAS  Google Scholar 

  92. Resasco, J.; DeRita, L.; Dai, S.; Chada, J. P.; Xu, M. J.; Yan, X. X.; Finzel, J.; Hanukovich, S.; Hoffman, A. S.; Graham, G. W. et al. Uniformity is key in defining structure-function relationships for atomically dispersed metal catalysts: The case of Pt/CeO2. J. Am. Chem. Soc. 2020, 142, 169–184.

    CAS  Google Scholar 

  93. Pereira-Hernández, X. I.; DeLaRiva, A.; Muravev, V.; Kunwar, D.; Xiong, H. F.; Sudduth, B.; Engelhard, M.; Kovarik, L.; Hensen, E. J. M.; Wang, Y. et al. Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 2019, 10, 1358.

    Google Scholar 

  94. Daelman, N.; Capdevila-Cortada, M.; López, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 2019, 18, 1215–1221.

    CAS  Google Scholar 

  95. Wang, C. L.; Gu, X. K.; Yan, H.; Lin, Y.; Li, J. J.; Liu, D. D.; Li, W. X.; Lu, J. L. Water-mediated Mars-Van Krevelen mechanism for CO oxidation on Ceria-supported single-atom Pt1 catalyst. ACS Catal. 2017, 7, 887–891.

    CAS  Google Scholar 

  96. Li, L. C.; Zhang, N. Q.; Wu, R.; Song, L. Y.; Zhang, G. Z.; He, H. Comparative study of moisture-treated Pd@CeO2/Al2O3 and Pd/CeO2/Al2O3 catalysts for automobile exhaust emission reactions: Effect of core-shell interface. ACS Appl. Mater. Interfaces 2020, 12, 10350–10358.

    CAS  Google Scholar 

  97. Ke, J.; Zhu, W.; Jiang, Y. Y.; Si, R.; Wang, Y. J.; Li, S. C.; Jin, C. H.; Liu, H. C.; Song, W. G.; Yan, C. H. et al. Strong local coordination structure effects on subnanometer PtOx clusters over CeO2 nanowires probed by low-temperature CO oxidation. ACS Catal. 2015, 5, 5164–5173.

    CAS  Google Scholar 

  98. Zhao, S.; Chen, F.; Duan, S. B.; Shao, B.; Li, T. B.; Tang, H. L.; Lin, Q. Q.; Zhang, J. Y.; Li, L.; Huang, J. H. et al. Remarkable active-site dependent H2O promoting effect in CO oxidation. Nat. Commun. 2019, 10, 3824.

    Google Scholar 

  99. Hu, X. L.; Li, S. Y.; Chen, Y. X.; Qu, W. Y.; Chen, J. X.; Ma, Z.; Tang, X. F. Single-ion copper doping greatly enhances catalytic activity of manganese oxides via electronic interactions. Chem. Commun. 2020, 56, 904–907.

    CAS  Google Scholar 

  100. Hu, P. P.; Huang, Z. W.; Amghouz, Z.; Makkee, M.; Xu, F.; Kapteijn, F.; Dikhtiarenko, A.; Chen, Y. X.; Gu, X.; Tang, X. F. Electronic metal-support interactions in single-atom catalysts. Angew. Chem., Int. Ed. 2014, 53, 3418–3421.

    CAS  Google Scholar 

  101. Qiao, B. T.; Lin, J.; Wang, A. Q.; Chen, Y.; Zhang, T.; Liu, J. Y. Highly active Au1/Co3O4 single-atom catalyst for CO oxidation at room temperature. Chin. J. Catal. 2015, 36, 1505–1511.

    CAS  Google Scholar 

  102. Hülsey, M. J.; Zhang, B.; Ma, Z. R.; Asakura, H.; Do, D. A.; Chen, W.; Tanaka, T.; Zhang, P.; Wu, Z. L.; Yan, N. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat. Commun. 2019, 10, 1330.

    Google Scholar 

  103. Zhang, J.; Wu, X.; Cheong, W. C.; Chen, W. X.; Lin, R.; Li, J.; Zheng, L. R.; Yan, W. S.; Gu, L.; Chen, C. et al. Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat. Commun. 2018, 9, 1002.

    Google Scholar 

  104. Long, B.; Tang, Y.; Li, J. New mechanistic pathways for CO oxidation catalyzed by single-atom catalysts: Supported and doped Au1/ThO2. Nano Res. 2016, 9, 3868–3880.

    CAS  Google Scholar 

  105. Yang, D.; Zhang, S. J.; Xu, P. H.; Browning, N. D.; Dixon, D. A.; Gates, B. C. Single-site osmium catalysts on MgO: Reactivity and catalysis of CO oxidation. Chem. -Eur. J. 2017, 23, 2532–2536.

    CAS  Google Scholar 

  106. Han, B.; Li, T. B.; Zhang, J. Y.; Zeng, C. B.; Matsumoto, H.; Su, Y.; Qiao, B. T.; Zhang, T. A highly active Rh1/CeO2 single-atom catalyst for low-temperature CO oxidation. Chem. Commun. 2020, 56, 4870–4873.

    CAS  Google Scholar 

  107. Zhang, Z. L.; Zhu, Y. H.; Asakura, H.; Zhang, B.; Zhang, J. G.; Zhou, M. X.; Han, Y.; Tanaka, T.; Wang, A. Q.; Zhang, T. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 2017, 8, 16100.

    CAS  Google Scholar 

  108. Kwak, J. H.; Hu, J. Z.; Mei, D. H.; Yi, C. W.; Kim, D. H.; Peden, C. H. F.; Allard, L. F.; Szanyi, J. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 2009, 325, 1670–1673.

    CAS  Google Scholar 

  109. Mei, D. H.; Kwak, J. H.; Hu, J. Z.; Cho, S. J.; Szanyi, J.; Allard, L. F.; Peden, C. H. F. Unique role of anchoring penta-coordinated Al3+ sites in the sintering of γ-Al2O3-supported Pt catalysts. J. Phys. Chem. Lett. 2010, 1, 2688–2691.

    CAS  Google Scholar 

  110. Moses-DeBusk, M.; Yoon, M.; Allard, L. F.; Mullins, D. R.; Wu, Z. L.; Yang, X. F.; Veith, G.; Stocks, G. M.; Narula, C. K. CO oxidation on supported single Pt atoms: Experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 2013, 135, 12634–12645.

    CAS  Google Scholar 

  111. Shinjoh, H. Rare earth metals for automotive exhaust catalysts. J. Alloys Compd. 2006, 408–412, 1061–1064.

    Google Scholar 

  112. Jing, Y.; Cai, Z. X.; Liu, C.; Toyao, T.; Maeno, Z.; Asakura, H.; Hiwasa, S.; Nagaoka, S.; Kondoh, H.; Shimizu, K. I. Promotional effect of La in the three-way catalysis of La-loaded Al2O3-supported Pd catalysts (Pd/La/Al2O3) ACS Catal. 2020, 10, 1010–2013.

    CAS  Google Scholar 

  113. Gholami, F.; Tomas, M.; Gholami, Z.; Vakili, M. Technologies for the nitrogen oxides reduction from flue gas: A review. Sci. Total Environ. 2020, 714, 136712.

    CAS  Google Scholar 

  114. Xin, Y.; Zhang, N. N.; Li, Q.; Zhang, Z. L.; Cao, X. M.; Zheng, L. R.; Zeng, Y. W.; Anderson, J. A. Selective catalytic reduction of NOx with NH3 over short-range ordered W-O-Fe structures with high thermal stability. Appl. Catal. B: Environ. 2018, 229, 81–87.

    CAS  Google Scholar 

  115. Xin, Y.; Li, H.; Zhang, N. N.; Li, Q.; Zhang, Z. L.; Cao, X. M.; Hu, P.; Zheng, L. R.; Anderson, J. A. Molecular-level insight into selective catalytic reduction of NOx with NH3 to N2 over a highly efficient bifunctional Va-MnOx catalyst at low temperature. ACS Catal. 2018, 8, 4937–4949.

    CAS  Google Scholar 

  116. Wu, R.; Li, L. C.; Zhang, N. Q.; He, J. D.; Song, L. Y.; Zhang, G Z.; Zhang, Z. L.; He, H. Enhancement of low-temperature NH3-SCR catalytic activity and H2O & SO2 resistance over commercial V2O5-MoO3/TiO2 catalyst by high shear-induced doping of expanded graphite. Catal. Today, in press, DOI: https://doi.org/10.1016/j.cattod.2020.04.051.

  117. Zhang, N. Q.; Li, L. C.; Zhao, J. S.; Yang, T. T.; Zhang, G. Z.; He, H.; Sun, S. R. Precisely controlled synthesis of α-/β-MnO2 materials by adding Zn(acac)2 as a phase transformation-inducing agent. Chem. Commun. 2018, 54, 1477–1480.

    CAS  Google Scholar 

  118. Jeon, J.; Kon, K. I.; Toyao, T.; Shimizu, K. I.; Furukawa, S. Design of Pd-based pseudo-binary alloy catalysts for highly active and selective NO reduction. Chem. Sci. 2019, 10, 4148–4162.

    CAS  Google Scholar 

  119. Xing, F. L.; Jeon, J.; Toyao, T.; Shimizu, K. I.; Furukawa, S. A. Cu-Pd single-atom alloy catalyst for highly efficient NO reduction. Chem. Sci. 2019, 10, 8292–8298.

    CAS  Google Scholar 

  120. Granger, P.; Dujardin, C.; Paul, J. F.; Leclercq, G. An overview of kinetic and spectroscopic investigations on three-way catalysts: Mechanistic aspects of the CO+NO and CO+N2O reactions. J. Mol. Catal. A: Chem. 2005, 228, 241–253.

    CAS  Google Scholar 

  121. Inomata, H.; Shimokawabe, M.; Kuwana, A.; Arai, M. Selective reduction of NO with CO in the presence of O2 with Ir/WO3 catalysts: Influence of preparation variables on the catalytic performance. Appl. Catal. B: Environ. 2008, 84, 783–789.

    CAS  Google Scholar 

  122. Gholami, Z.; Luo, G. H.; Gholami, F.; Yang, F. Recent advances in selective catalytic reduction of NOx by carbon monoxide for flue gas cleaning process: A review. Catal. Rev., in press, DOI: https://doi.org/10.1080/01614940.2020.1753972.

  123. Wu, J. C.; Li, Y. Z.; Yang, Y.; Zhang, Q.; Yun, L.; Wu, S. W.; Zhou, C. Y.; Jiang, Z. K.; Zhao, X. J. A heterogeneous single Cu catalyst of Cu atoms confined in the spinel lattice of MgAl2O4 with good catalytic activity and stability for NO reduction by CO. J. Mater. Chem. A 2019, 7, 7202–7212.

    CAS  Google Scholar 

  124. Zhang, S. R.; Tang, Y.; Nguyen, L.; Zhao, Y. F.; Wu, Z. L.; Goh, T. W.; Liu, J. J.; Li, Y. Y.; Zhu, T.; Huang, W. Y. et al. Catalysis on singly dispersed Rh atoms anchored on an inert support. ACS Catal. 2018, 8, 110–121.

    CAS  Google Scholar 

  125. Nanba, T.; Shinohara, S.; Masukawa, S.; Uchisawa, J.; Ohi, A.; Obuchi, A. Formation of active sites on Ir/WO3–SiO2 for selective catalytic reduction of NO by CO. Appl. Catal. B: Environ. 2008, 84, 420–425.

    CAS  Google Scholar 

  126. Fernández, E.; Liu, L. C.; Boronat, M.; Arenal, R.; Concepcion, P.; Corma, A. Low-temperature catalytic NO reduction with CO by subnanometric Pt clusters. ACS Catal. 2019, 9, 11530–11541.

    Google Scholar 

  127. Masahide, S.; Mihiro, N.; Hironori, I.; Nobuhiro, I.; Masahiko, A. A highly active Ir/WO3 catalyst for the selective reduction of NO by CO in the presence of O2 or O2 + SO2. Chem. Lett. 2005, 34, 1426–1427.

    Google Scholar 

  128. Goodman, E. D.; Johnston-Peck, A. C.; Dietze, E. M.; Wrasman, C. J.; Hoffman, A. S.; Abild-Pedersen, F.; Bare, S. R.; Plessow, P. N.; Cargnello, M. Catalyst deactivation via decomposition into single atoms and the role of metal loading. Nat. Catal. 2019, 2, 748–755.

    CAS  Google Scholar 

  129. Narula, C. K.; Allard, L. F.; Moses-DeBusk, M.; Stocks, G M.; Wu, Z. L. Single Pd atoms on θ-Al2O3 (010) surface do not catalyze NO oxidation. Sci. Rep. 2017, 7, 560.

    Google Scholar 

  130. Wang, H.; Dong, J. S.; Allard, L. F.; Lee, S.; Oh, S.; Wang, J.; Li, W.; Shen, M. Q.; Yang, M. Single-site Pt/La-Al2O3 stabilized by barium as an active and stable catalyst in purifying CO and C3H6 emissions. Appl. Catal. B: Environ. 2019, 244, 327–339.

    CAS  Google Scholar 

  131. An, H. M.; McGinn, P. J. Catalytic behavior of potassium containing compounds for diesel soot combustion. Appl. Catal. B: Environ. 2006, 62, 46–56.

    CAS  Google Scholar 

  132. Gabelnick, A. M.; Capitano, A. T.; Kane, S. M.; Gland, J. L.; Fischer, D. A. Propylene oxidation mechanisms and intermediates using in situ soft x-ray fluorescence methods on the Pt(111) surface. J. Am. Chem. Soc. 2000, 122, 143–149.

    CAS  Google Scholar 

  133. Jeong, H.; Bae, J.; Han, J. W.; Lee, H. Promoting effects of hydrothermal treatment on the activity and durability of Pd/CeO2 catalysts for CO oxidation. ACS Catal. 2017, 7, 7097–7105.

    CAS  Google Scholar 

  134. Environmental Protection Agency U. S. Environmental topics (health) [Online]. https://www.epa.gov/environmental-topics/health-topics. (accessed 8 May 2017).

  135. Liotta, L. F. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B: Environ 2010, 100, 403–412.

    CAS  Google Scholar 

  136. Chen, J. X.; Gao, J. Y.; Chen, Y. X.; Liu, X. N.; Li, C.; Qu, W. Y.; Ma, Z.; Tang, X. F. Electronic-structure-dependent performance of single-site potassium catalysts for formaldehyde emission control. Ind. Eng. Chem. Res. 2018, 57, 12352–12357.

    CAS  Google Scholar 

  137. Chen, J.; Yan, D. X.; Xu, Z.; Chen, X.; Chen, X.; Xu, W. J.; Jia, H. P.; Chen, J. A novel redox precipitation to synthesize Au-doped α-MnO2 with high dispersion toward low-temperature oxidation of formaldehyde. Environ. Sci. Technol. 2018, 52, 4728–4737.

    CAS  Google Scholar 

  138. Huang, M. M.; Li, Y. X.; Li, M. W.; Zhao, J.; Zhu, Y. Q.; Wang, C. Y.; Sharma, V. K. Active site-directed tandem catalysis on single platinum nanoparticles for efficient and stable oxidation of formaldehyde at room temperature. Environ. Sci. Technol. 2019, 53, 3610–3619.

    CAS  Google Scholar 

  139. Sun, X. C.; Lin, J.; Chen, Y.; Wang, Y. H.; Li, L.; Miao, S.; Pan, X. L.; Wang, X. D. Unravelling platinum nanoclusters as active sites to lower the catalyst loading for formaldehyde oxidation. Commun. Chem. 2019, 2, 27.

    Google Scholar 

  140. Chen, J.; Jiang, M. Z.; Xu, W. J.; Chen, J.; Hong, Z. X.; Jia, H. P. Incorporating Mn cation as anchor to atomically disperse Pt on TiO2 for low-temperature removal of formaldehyde. Appl. Catal. B: Environ. 2019, 259, 118013.

    CAS  Google Scholar 

  141. Xu, F.; Huang, Z. W.; Hu, P. P.; Chen, Y. X.; Zheng, L.; Gao, J. Y.; Tang, X. F. The promotion effect of isolated potassium atoms with hybridized orbitals in catalytic oxidation. Chem. Commun. 2015, 51, 9888–9891.

    CAS  Google Scholar 

  142. Masatake, H.; Tetsuhiko, K.; Hiroshi, S.; Nobumasa, Y. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chem. Lett. 1987, 16, 405–408.

    Google Scholar 

  143. Chen, J.; Jiang, M. Z.; Chen, J.; Xu, W. J.; Jia, H. P. Selective immobilization of single-atom Au on cerium dioxide for low-temperature removal of C1 gaseous contaminants. J. Hazard. Mater. 2020, 392, 122511.

    CAS  Google Scholar 

  144. Widmann, D.; Behm, R. J. Active oxygen on a Au/TiO2 catalyst: Formation, stability, and CO oxidation activity. Angew. Chem., Int. Ed. 2011, 50, 10241–10245.

    CAS  Google Scholar 

  145. Shahna, F. G.; Golbabaei, F.; Hamedi, J.; Mahjub, H.; Darabi, H. R.; Shahtaheri, S. J. Treatment of benzene, toluene and xylene contaminated air in a bioactive foam emulsion reactor. Chin. J. Chem. Eng. 2010, 18, 113–121.

    CAS  Google Scholar 

  146. Wang, Z. W.; Yang, H. G; Liu, Y.; Xie, S. G.; Liu, Y. X.; Dai, H. X.; Huang, H. B.; Deng, J. G. Probing toluene catalytic removal mechanism over supported Pt nano- and single-atom-catalyst. J. Hazard. Mater. 2020, 392, 122258.

    CAS  Google Scholar 

  147. Xu, T. Z.; Zheng, H.; Zhang, P. Y. Isolated Pt single atomic sites anchored on nanoporous TiO2 film for highly efficient photocatalytic degradation of low concentration toluene. J. Hazard. Mater. 2020, 388, 121746.

    CAS  Google Scholar 

  148. Mon, M.; Rivero-Crespo, M. A.; Ferrando-Soria, J.; Vidal-Moya, A.; Boronat, M.; Leyva-Pérez, A.; Corma, A.; Hernández-Garrido, J. C.; López-Haro, M.; Calvino, J. J. et al. Synthesis of densely packaged, ultrasmall Pt02 clusters within a thioether-functionalized MOF: Catalytic activity in industrial reactions at low temperature. Angew. Chem., Int. Ed. 2018, 57, 6186–6191.

    CAS  Google Scholar 

  149. Li, H. L.; Wang, L. B.; Dai, Y. Z.; Pu, Z. T.; Lao, Z. H.; Chen, Y. W.; Wang, M. L.; Zheng, X. S.; Zhu, J. F.; Zhang, W. H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 2018, 13, 411–417.

    CAS  Google Scholar 

  150. Ji, S. F.; Chen, Y. J.; Zhao, S.; Chen, W. X.; Shi, L. J.; Wang, Y.; Dong, J. C.; Li, Z.; Li, F. W.; Chen, C. et al. Atomically dispersed ruthenium species inside metal-organic frameworks: Combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem., Int. Ed. 2019, 58, 4271–4275.

    CAS  Google Scholar 

  151. Toyao, T.; Maeno, Z.; Takakusagi, S.; Kamachi, T.; Takigawa, I.; Shimizu, K. I. Machine learning for catalysis informatics: Recent applications and prospects. ACS Catal. 2020, 10, 2260–2297.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation (No. 2020M670355), the National Key R&D Program of China (No. 2018YFA0702003), the National Natural Science Foundation of China (Nos. 21890383, 21671117, and 21871159), the Science and Technology Key Project of Guangdong Province of China (No. 2020B010188002), and Beijing Municipal Science & Technology Commission (No. Z191100007219003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingcong Li or Dingsheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Ye, C., Yan, H. et al. Single-atom site catalysts for environmental catalysis. Nano Res. 13, 3165–3182 (2020). https://doi.org/10.1007/s12274-020-2994-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2994-3

Keywords

Navigation