Skip to main content
Log in

An in-situ spectroscopy investigation of alkali metal interaction mechanism with the imide functional group

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Organic anode materials have attracted considerable interest owing to their high tunability by adopting various active functional groups. However, the interaction mechanisms between the alkali metals and the active functional groups in host materials have been rarely studied systematically. Here, a widely used organic semiconductor of perylene-3,4,9,10-tetracarboxylic diimide (PTCDI) was selected as a model system to investigate how alkali metals interact with imide functional groups and induce changes in chemical and electronic structures of PTCDI. The interaction at the alkali/PTCDI interface was probed by in-situ X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), synchrotron-based near edge X-ray absorption fine structure (NEXAFS), and corroborated by density functional theory (DFT) calculations. Our results indicate that the alkali metal replaces the hydrogen atoms in the imide group and interact with the imide nitrogen of PTCDI. Electron transfer induced gap states and downward band-bending like effects are identified on the alkali-deposited PTCDI surface. It was found that Na shows a stronger electron transfer effect than Li. Such a model study of alkali insertion/intercalation in PTCDI gives insights for the exploration of the potential host materials for alkali storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodenough, J. B. How we made the Li-ion rechargeable battery. Nat. Electron. 2018, 1, 204.

    Google Scholar 

  2. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    CAS  Google Scholar 

  3. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    CAS  Google Scholar 

  4. Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 2014, 114, 11414–11443.

    CAS  Google Scholar 

  5. Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.

    CAS  Google Scholar 

  6. Luo, W.; Wan, J. Y.; Ozdemir, B.; Bao, W. Z.; Chen, Y. N.; Dai, J. Q.; Lin, H.; Xu, Y.; Gu, F.; Barone, V. et al. Potassium ion batteries with graphitic materials. Nano Lett. 2015, 15, 7671–7677.

    CAS  Google Scholar 

  7. Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114.

    CAS  Google Scholar 

  8. Lu, Y. Y.; Korf, K.; Kambe, Y.; Tu, Z. Y.; Archer, L. A. Ionic-liquid–nanoparticle hybrid electrolytes: Applications in lithium metal batteries. Angew. Chem., Int. Ed. 2014, 53, 488–492.

    CAS  Google Scholar 

  9. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    CAS  Google Scholar 

  10. Zhao, Q.; Lu, Y.; Chen, J. Advanced organic electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 2017, 7, 1601792.

    Google Scholar 

  11. Lu, Y.; Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 2020, 4, 127–142.

    CAS  Google Scholar 

  12. Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

    CAS  Google Scholar 

  13. Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

    CAS  Google Scholar 

  14. Zhao, Q.; Zhu, Z. Q.; Chen, J. Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries. Adv. Mater. 2017, 29, 1607007.

    Google Scholar 

  15. Lee, S.; Kwon, G.; Ku, K.; Yoon, K.; Jung, S. K.; Lim, H. D.; Kang, K. Recent progress in organic electrodes for Li and Na rechargeable batteries. Adv. Mater. 2018, 30, 1704682.

    Google Scholar 

  16. Xie, J.; Cheng, X. F.; Cao, X.; He, J. H.; Guo, W.; Li, D. S.; Xu, Z. J.; Huang, Y.; Lu, J. M.; Zhang, Q. C. Nanostructured metal-organic conjugated coordination polymers with ligand tailoring for superior rechargeable energy storage. Small 2019, 15, 1903188.

    CAS  Google Scholar 

  17. Shea, J. J.; Luo, C. Organic electrode materials for metal ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 5361–5380.

    CAS  Google Scholar 

  18. Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribière, P.; Poizot, P.; Tarascon, J. M. Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater. 2009, 8, 120–125.

    CAS  Google Scholar 

  19. Wang, C.; Tang, W.; Yao, Z. Y.; Chen, Y. Z.; Pei, J. F.; Fan, C. Using an organic acid as a universal anode for highly efficient Li-ion, Na-ion and K-ion batteries. Org. Electron. 2018, 62, 536–541.

    CAS  Google Scholar 

  20. Park, Y.; Shin, D. S.; Woo, S. H.; Choi, N. S.; Shin, K. H.; Oh, S. M.; Lee, K. T.; Hong, S. Y. Sodium terephthalate as an organic anode material for sodium ion batteries. Adv. Mater. 2012, 24, 3562–3567.

    CAS  Google Scholar 

  21. Chen, Y. N.; Luo, W.; Carter, M.; Zhou, L. H.; Dai, J. Q.; Fu, K.; Lacey, S.; Li, T.; Wan, J. Y.; Han, X. G. et al. Organic electrode for non-aqueous potassium-ion batteries. Nano Energy 2015, 18, 205–211.

    CAS  Google Scholar 

  22. Bai, Y. F.; Fu, W. B.; Chen, W. H.; Chen, Z. C.; Pan, X. J.; Lv, X. X.; Wu, J. C.; Pan, X. B. Perylenetetracarboxylic diimide as a high-rate anode for potassium-ion batteries. J. Mater. Chem. A 2019, 7, 24454–24461.

    CAS  Google Scholar 

  23. Wang, C.; Tang, W.; Yao, Z. Y.; Cao, B.; Fan, C. Potassium perylene-tetracarboxylate with two-electron redox behaviors as a highly stable organic anode for K-ion batteries. Chem. Commun. 2019, 55, 1801–1804.

    CAS  Google Scholar 

  24. Han, X. Y.; Qing, G Y.; Sun, J. T.; Sun, T. L. How many lithium ions can be inserted onto fused C6 aromatic ring systems? Angew. Chem., Int. Ed. 2012, 51, 5147–5151.

    CAS  Google Scholar 

  25. Ng, A. M. C.; Djurišić, A. B.; Tam, K. H.; Cheng, K. W.; Chan, W. K.; Tam, H. L.; Cheah, K. W.; Lu, A. W.; Chan, J.; Rakic, A. D. 3,4,9,10-perylenetetracarboxylicdiimide as an interlayer for ultraviolet organic light emitting diodes. Opt. Commun. 2008, 281, 2498–2503.

    CAS  Google Scholar 

  26. Zhao, H. J.; Zhao, Y. B.; Song, Y. X.; Zhou, M.; Lv, W.; Tao, L.; Feng, Y. Z.; Song, B. Y.; Ma, Y.; Zhang, J. Q. et al. Strong optical response and light emission from a monolayer molecular crystal. Nat. Commun. 2019, 10, 5589.

    CAS  Google Scholar 

  27. Roh, J.; Lee, J.; Kang, C. M.; Lee, C.; Jung, B. J. Air stability of PTCDI-C13-based n-OFETs on polymer interfacial layers. Phys. Status Solidi 2013, 7, 469–472.

    CAS  Google Scholar 

  28. Rost, C.; Gundlach, D. J.; Karg, S.; Rieß, W. Ambipolar organic field-effect transistor based on an organic heterostructure. J. Appl. Phys. 2004, 95, 5782–5787.

    CAS  Google Scholar 

  29. Deng, W. W.; Shen, Y. F.; Qian, J. F.; Cao, Y. L.; Yang, H. X. A perylene diimide crystal with high capacity and stable cyclability for Na-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 21095–21099.

    CAS  Google Scholar 

  30. Wu, D. Q.; Jing, F.; Xi, X.; Ma, L.; Lu, D.; Yang, P.; Liu, R. L. An acid-pasting approach towards perylenetetracarboxylic diimide based lithium/sodium ion battery cathodes with high rate performances. J. Colloid Interface Sci. 2019, 538, 597–604.

    CAS  Google Scholar 

  31. Zhu, X. M.; Liu, X. L.; Deng, W. W.; Xiao, L. F.; Yang, H. X.; Cao, Y. L. Perylenediimide dyes as a cheap and sustainable cathode for lithium ion batteries. Mater. Lett. 2016, 175, 191–194.

    CAS  Google Scholar 

  32. Lian, X.; Ma, Z. R.; Zhang, Z. H.; Yang, J. L.; Liu, Y.; Gu, C. D.; Guo, R.; Wang, Y. N.; Ye, X.; Sun, S. et al. Alkali metal storage mechanism in organic semiconductor of perylene-3,4,9,10-tetracarboxylicdianhydride. Appl. Surf. Sci. 2020, 524, 146396.

    CAS  Google Scholar 

  33. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, 2009.

    Google Scholar 

  34. Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

    Google Scholar 

  35. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.

    CAS  Google Scholar 

  36. Franco-Cañellas, A.; Wang, Q.; Broch, K.; Duncan, D. A.; Thakur, P. K.; Liu, L. J.; Kera, S.; Gerlach, A.; Duhm, S.; Schreiber, F. Metal-organic interface functionalization via acceptor end groups: PTCDI on coinage metals. Phys. Rev. Mater. 2017, 1, 013001.

    Google Scholar 

  37. Peyrot, D.; Silly, F. Temperature-dependent structure of two-dimensional hybrid NaCl-PTCDI nanoarchitectures on Au(111). J. Phys. Chem. C 2017, 121, 20986–20993.

    CAS  Google Scholar 

  38. Mura, M.; Silly, F.; Briggs, G. A. D.; Castell, M. R.; Kantorovich, L. N. H-bonding supramolecular assemblies of PTCDI molecules on the Au(111) surface. J. Phys. Chem. C 2009, 113, 21840–21848.

    CAS  Google Scholar 

  39. Shi, Y.; Tang, H. M.; Jiang, S. L.; Kayser, L. V.; Li, M. Q.; Liu, F.; Ji, F.; Lipomi, D. J.; Ong, S. P.; Chen, Z. Understanding the electrochemical properties of naphthalene diimide: Implication for stable and highrate lithium-ion battery electrodes. Chem. Mater. 2018, 30, 3508–3517.

    CAS  Google Scholar 

  40. Zahn, D. R. T.; Gavrila, G. N.; Salvan, G. Electronic and vibrational spectroscopies applied to organic/inorganic interfaces. Chem. Rev. 2007, 107, 1161–1232.

    CAS  Google Scholar 

  41. Taborski, J.; Väterlein, P.; Dietz, H.; Zimmermann, U.; Umbach, E. NEXAFS investigations on ordered adsorbate layers of large aromatic molecules. J. Electron Spectrosc. Relat. Phenom. 1995, 75, 129–147.

    CAS  Google Scholar 

  42. Emanuelsson, C.; Johansson, L. S. O.; Zhang, H. M. Photoelectron spectroscopy studies of PTCDI on Ag/Si(111)-\(\sqrt 3 \times \sqrt 3 \). J. Chem. Phys. 2018, 149, 044702.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Singapore MOE Tier II grant R143-000-A29-112, Academic Research Fund Tie I grant RG104/18, and the National Research Foundation under the grant of NRF2017NRF-NSFC001-007, as well as the computing resources from National Supercomputing Centre Singapore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuzhou Li or Wei Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, X., Ma, Z., Zhang, Z. et al. An in-situ spectroscopy investigation of alkali metal interaction mechanism with the imide functional group. Nano Res. 13, 3224–3229 (2020). https://doi.org/10.1007/s12274-020-2991-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2991-6

Keywords

Navigation