Skip to main content

Nanoparticles for targeted cancer radiotherapy

Abstract

Radiotherapy, where ionizing radiation is locally delivered either through an external beam or by surgically implanting radionuclide-based seeds in the tumor, is one of the gold standard treatments for cancer. Due to the non-selective nature of radiation, healthy tissue surrounding the cancerous region is usually affected by the treatment. Hence, new strategies, including targeted alpha therapy, are being studied to improve the selectivity of the treatment and minimize side effects. Several challenges, however, limit the current development of targeted radiotherapy, such as the functionalization of the therapeutic agent with targeting vectors and controlling the release of recoiling daughters. Nanoparticles offer unique opportunities as drug delivery vehicles, since they are biocompatible, enhance the cellular uptake of drugs, and are easily functionalized with targeting molecules. In this review, we examine how nanoparticles can be used for targeted radiotherapy, either as sensitizers of external beams or as delivery vehicles for therapeutic radionuclides. We describe the clinical relevance of different types of nanoparticles, followed by an analysis of how these nanoconstructs can solve some of the main limitations of conventional radiotherapy. Finally, we critically discuss the current situation of nanoparticle-based radiotherapy in clinical settings and challenges that need to be overcome in the future for further development of the field.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Peschel, R. E.; Colberg, J. W. Surgery, brachytherapy, and external-beam radiotherapy for early prostate cancer. Lancet Oncol. 2003, 4, 233–241.

    Google Scholar 

  2. [2]

    Trial, S. R. C. Improved survival with preoperative radiotherapy in resectable rectal cancer. N. Engl. J. Med. 1997, 336, 980–987.

    Google Scholar 

  3. [3]

    Kapiteijn, E.; Marijnen, C. A. M.; Nagtegaal, I. D.; Putter, H.; Steup, W. H.; Wiggers, T.; Rutten, H. J. T.; Pahlman, L.; Glimelius, B.; van Krieken, J. H. J. M. et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N. Engl. J. Med. 2001, 345, 638–646.

    CAS  Google Scholar 

  4. [4]

    Bosset, J. F.; Collette, L.; Calais, G.; Mineur, L.; Maingon, P.; Radosevic-Jelic, L.; Daban, A.; Bardet, E.; Beny, A.; Ollier, J. C. Chemotherapy with preoperative radiotherapy in rectal cancer. N. Engl. J. Med. 2006, 355, 1114–1123.

    CAS  Google Scholar 

  5. [5]

    Bartelink, H.; Roelofsen, F.; Eschwege, F.; Rougier, P.; Bosset, J. F.; Gonzalez, D. G.; Peiffert, D.; van Glabbeke, M.; Pierart, M. Concomitant radiotherapy and chemotherapy is superior to radiotherapy alone in the treatment of locally advanced anal cancer: Results of a phase III randomized trial of the European organization for research and treatment of cancer radiotherapy and gastrointestinal cooperative groups. J. Clin. Oncol. 1997, 15, 2040–2049.

    CAS  Google Scholar 

  6. [6]

    Ragaz, J.; Jackson, S. M.; Le, N.; Plenderleith, I. H.; Spinelli, J. J.; Basco, V. E.; Wilson, K. S.; Knowling, M. A.; Coppin, C. M. L.; Paradis, M. et al. Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer. N. Engl. J. Med. 1997, 337, 956–962.

    CAS  Google Scholar 

  7. [7]

    Delaney, G.; Jacob, S.; Featherstone, C.; Barton, M. The role of radiotherapy in cancer treatment. Cancer 2005, 104, 1129–1137.

    Google Scholar 

  8. [8]

    Hoskin, P. J.; Motohashi, K.; Bownes, P.; Bryant, L.; Ostler, P. High dose rate brachytherapy in combination with external beam radiotherapy in the radical treatment of prostate cancer: Initial results of a randomised phase three trial. Radiother. Oncol 2007, 84, 114–120.

    Google Scholar 

  9. [9]

    Joiner, M. C.; Van der Kogel, A. Basic Clinical Radiobiology; CRC Press: Boca Raton, FL, 2009.

    Google Scholar 

  10. [10]

    Bentzen, S. M. Quantitative clinical radiobiology. Acta Oncol. 1993, 32, 259–275.

    CAS  Google Scholar 

  11. [11]

    Jaffray, D. A. Image-guided radiotherapy: From current concept to future perspectives. Nat. Rev. Clin. Oncol. 2012, 9, 688–699.

    CAS  Google Scholar 

  12. [12]

    Morris, Z. S.; Harari, P. M. Interaction of radiation therapy with molecular targeted agents. J. Clin. Oncol. 2014, 32, 2886–2893.

    CAS  Google Scholar 

  13. [13]

    Sun, H. N.; Wang, X. L.; Zhai, S. M. The rational design and biological mechanisms of nanoradiosensitizers. Nanomaterials 2020, 10, 504.

    CAS  Google Scholar 

  14. [14]

    Boateng, F.; Ngwa, W. Delivery of nanoparticle-based radiosensitizers for radiotherapy applications. Int. J. Mol. Sci. 2020, 21, 273.

    CAS  Google Scholar 

  15. [15]

    Xie, D.; Wang, M. P.; Qi, W. H. A simplified model to calculate the surface-to-volume atomic ratio dependent cohesive energy of nanocrystals. J. Phys.: Condens. Matter 2004, 16, L401–L405.

    CAS  Google Scholar 

  16. [16]

    Pallares, R. M.; Choo, P.; Cole, L. E.; Mirkin, C. A.; Lee, A.; Odom, T. W. Manipulating immune activation of macrophages by tuning the oligonucleotide composition of gold nanoparticles. Bioconjugate Chem. 2019, 30, 2032–2037.

    CAS  Google Scholar 

  17. [17]

    Patel, P. C.; Giljohann, D. A.; Daniel, W. L.; Zheng, D.; Prigodich, A. E.; Mirkin, C. A. Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjugate Chem. 2010, 21, 2250–2256.

    CAS  Google Scholar 

  18. [18]

    Engels, E.; Westlake, M.; Li, N.; Vogel, S.; Gobert, Q.; Thorpe, N.; Rosenfeld, A.; Lerch, M.; Corde, S.; Tehei, M. Thulium Oxide Nanoparticles: A new candidate for image-guided radiotherapy. Biomed. Phys. Eng. Exp. 2018, 4, 044001.

    Google Scholar 

  19. [19]

    Yue, J.; Pallares, R. M.; Cole, L. E.; Coughlin, E. E.; Mirkin, C. A.; Lee, A.; Odom, T. W. Smaller CpG-conjugated gold nanoconstructs achieve higher targeting specificity of immune activation. ACS Appl. Mater. Interfaces 2018, 10, 21920–21926.

    CAS  Google Scholar 

  20. [20]

    Pallares, R. M.; Kong, S. L.; Ru, T. H.; Thanh, N. T. K.; Lu, Y.; Su, X. D. A plasmonic nanosensor with inverse sensitivity for circulating cell-free DNA quantification. Chem. Commun. 2015, 51, 14524–14527.

    CAS  Google Scholar 

  21. [21]

    Lu, A. H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. 2007, 46, 1222–1244.

    CAS  Google Scholar 

  22. [22]

    Pallares, R. M.; Thanh, N. T. K.; Su, X. D. Tunable plasmonic colorimetric assay with inverse sensitivity for extracellular DNA quantification. Chem. Commun. 2018, 54, 11260–11263.

    CAS  Google Scholar 

  23. [23]

    Sedlmeier, A.; Gorris, H. H. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem. Soc. Rev. 2015, 44, 1526–1560.

    CAS  Google Scholar 

  24. [24]

    Pallares, R. M.; Thanh, N. T. K.; Su, X. D. Quantifying the binding between proteins and open chromatin-like DNA sequences with gold nanorods. Chem. Commun. 2019, 55, 15041–15044.

    CAS  Google Scholar 

  25. [25]

    Pallares, R. M.; Carter, K. P.; Zeltmann, S. E.; Tratnjek, T.; Minor, A. M.; Abergel, R. J. Selective lanthanide sensing with gold nanoparticles and hydroxypyridinone chelators. Inorg. Chem. 2020, 59, 2030–2036.

    CAS  Google Scholar 

  26. [26]

    Pallares, R. M.; Bosman, M.; Thanh, N. T. K.; Su, X. D. A plasmonic multi-logic gate platform based on sequence-specific binding of estrogen receptors and gold nanorods. Nanoscale 2016, 8, 19973–19977.

    CAS  Google Scholar 

  27. [27]

    Wu, P. H.; Onodera, Y.; Ichikawa, Y.; Rankin, E. B.; Giaccia, A. J.; Watanabe, Y.; Qian, W.; Hashimoto, T.; Shirato, H.; Nam, J. M. Targeting integrins with RGD-conjugated gold nanoparticles in radiotherapy decreases the invasive activity of breast cancer cells. Int. J. Nanomedicine 2017, 12, 5069–5085.

    CAS  Google Scholar 

  28. [28]

    Du, F. Y.; Lou, J. M.; Jiang, R.; Fang, Z. Z.; Zhao, X. F.; Niu, Y. Y.; Zou, S. Q.; Zhang, M. M.; Gong, A. H.; Wu, C. Y. Hyaluronic acid-functionalized bismuth oxide nanoparticles for computed tomography imaging-guided radiotherapy of tumor. Int. J. Nanomedicine 2017, 12, 5973–5992.

    CAS  Google Scholar 

  29. [29]

    Huynh, N. T.; Roger, E.; Lautram, N.; Benoît, J. P.; Passirani, C. The rise and rise of stealth nanocarriers for cancer therapy: Passive versus active targeting. Nanomedicine 2010, 5, 1415–1433.

    CAS  Google Scholar 

  30. [30]

    Rabanel, J. M.; Aoun, V.; Elkin, I.; Mokhtar, M.; Hildgen, P. Drug-loaded nanocarriers: Passive targeting and crossing of biological barriers. Curr. Med. Chem. 2012, 19, 3070–3102.

    CAS  Google Scholar 

  31. [31]

    Pallares, R. M.; Su, X. D.; Lim, S. H.; Thanh, N. T. K. Fine-tuning of gold nanorod dimensions and plasmonic properties using the Hofmeister effects. J. Mater. Chem. C 2016, 4, 53–61.

    CAS  Google Scholar 

  32. [32]

    Pallares, R. M.; Wang, Y. S.; Lim, S. H.; Thanh, N. T. K.; Su, X. D. Growth of anisotropic gold nanoparticles in photoresponsive fluid for UV sensing and erythema prediction. Nanomedicine 2016, 11, 2845–2860.

    CAS  Google Scholar 

  33. [33]

    Pallares, R. M.; Stilson, T.; Choo, P.; Hu, J. T.; Odom, T. W. Using good’s buffers to control the anisotropic structure and optical properties of spiky gold nanoparticles for refractive index sensing. ACS Appl. Nano Mater. 2019, 2, 5266–5271.

    Google Scholar 

  34. [34]

    Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808–5829.

    CAS  Google Scholar 

  35. [35]

    Alkilany, A. M.; Thompson, L. B.; Boulos, S. P.; Sisco, P. N.; Murphy, C. J. Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev. 2012, 64, 190–199.

    CAS  Google Scholar 

  36. [36]

    Mansoori, G. A.; Mohazzabi, P.; McCormack, P.; Jabbari, S. Nanotechnology in cancer prevention, detection and treatment: Bright future lies ahead. World Rev. Sci., Technol. Sustain. Dev. 2007, 4, 226–257.

    Google Scholar 

  37. [37]

    Du, J. F.; Gu, Z. J.; Yan, L.; Yong, Y.; Yi, X.; Zhang, X.; Liu, J.; Wu, R. F.; Ge, C. C.; Chen, C. Y. et al. Poly(vinylpyrollidone)- and selenocysteine-modified Bi2Se3 nanoparticles enhance radiotherapy efficacy in tumors and promote radioprotection in normal tissues. Adv. Mater. 2017, 29, 1701268.

    Google Scholar 

  38. [38]

    Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L. F.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.

    CAS  Google Scholar 

  39. [39]

    Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249, 1870–1901.

    Google Scholar 

  40. [40]

    Mourdikoudis, S.; Pallares, R. M.; Thanh, N. T. K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018, 10, 12871–12934.

    CAS  Google Scholar 

  41. [41]

    Pallares, R. M.; Thanh, N. T. K.; Su, X. D. Sensing of circulating cancer biomarkers with metal nanoparticles. Nanoscale 2019, 11, 22152–22171.

    CAS  Google Scholar 

  42. [42]

    Pallares, R. M.; Abergel, R. J. Transforming lanthanide and actinide chemistry with nanoparticles. Nanoscale 2020, 12, 1339–1348.

    CAS  Google Scholar 

  43. [43]

    Li, N.; Su, X. D.; Lu, Y. Nanomaterial-based biosensors using dual transducing elements for solution phase detection. Analyst 2015, 140, 2916–2943.

    CAS  Google Scholar 

  44. [44]

    Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2003, 36, R167–R181.

    CAS  Google Scholar 

  45. [45]

    Ren, X. C.; Liu, Y. E.; Li, J.; Lin, Q. Progress in image-guided radiotherapy for the treatment of non-small cell lung cancer. World J. Radiol. 2019, 11, 46–54.

    Google Scholar 

  46. [46]

    L’Annunziata, M. F. Chapter 1 — Radioactivity and our well-being. In Radioactivity; 2nd ed. L’Annunziata, M. F., Ed.; Elsevier: Boston, 2016; pp 1–66.

    Google Scholar 

  47. [47]

    Amols, H. I.; Lagueux, B.; Cagna, D. Radiobiological effectiveness (RBE) of megavoltage X-ray and electron beams in radiotherapy. Radiat. Res. 1986, 105, 58–67.

    CAS  Google Scholar 

  48. [48]

    Smith, R.; Davidson, J. K.; Flatman, G. E. Skeletal effects of orthovoltage and megavoltage therapy following treatment of nephroblastoma. Clin. Radiol. 1982, 33, 601–613.

    CAS  Google Scholar 

  49. [49]

    Eastman, R. C.; Görden, P.; Glatstein, E.; Roth, J. Radiation therapy of acromegaly. Endocrinol. Metab. Clin. North Am. 1992, 21, 693–712.

    CAS  Google Scholar 

  50. [50]

    Mohan, R.; Grosshans, D. Proton therapy—Present and future. Adv. Drug Deliv. Rev. 2017, 109, 26–44.

    CAS  Google Scholar 

  51. [51]

    Laprise-Pelletier, M.; Simão, T.; Fortin, M. A. Gold nanoparticles in radiotherapy and recent progress in nanobrachytherapy. Adv. Healthc. Mater. 2018, 7, 1701460.

    Google Scholar 

  52. [52]

    Anholt, R.; Rasmussen, J. O. Theoretical X-ray transition probabilities for high-Z superheavy elements. Phys. Rev. A 1974, 9, 585–592.

    CAS  Google Scholar 

  53. [53]

    Seibert, J. A.; Boone, J. M. X-ray imaging physics for nuclear medicine technologists. Part 2: X-ray interactions and image formation. J. Nucl. Med. Technol. 2005, 33, 3–18.

    Google Scholar 

  54. [54]

    Ebel, H.; Svagera, R.; Ebel, M. F.; Shaltout, A.; Hubbell, J. H. Numerical description of photoelectric absorption coefficients for fundamental parameter programs. X-Ray Spectrom. 2003, 32, 442–451.

    CAS  Google Scholar 

  55. [55]

    Yokoya, A.; Shikazono, N.; Fujii, K.; Urushibara, A.; Akamatsu, K.; Watanabe, R. DNA damage induced by the direct effect of radiation. Radiat. Phys. Chem. 2008, 77, 1280–1285.

    CAS  Google Scholar 

  56. [56]

    Karnas, S. J.; Moiseenko, V. V.; Yu, E.; Truong, P.; Battista, J. J. Monte Carlo simulations and measurement of DNA damage from x-ray-triggered Auger cascades in iododeoxyuridine (IUdR). Radiat. Environ. Biophys. 2001, 40, 199–206.

    CAS  Google Scholar 

  57. [57]

    Hainfeld, J. F.; Ridwan, S. M.; Stanishevskiy, Y.; Panchal, R.; Slatkin, D. N.; Smilowitz, H. M. Iodine nanoparticles enhance radiotherapy of intracerebral human glioma in mice and increase efficacy of chemotherapy. Sci. Rep. 2019, 9, 4505.

    Google Scholar 

  58. [58]

    Moeller, B. J.; Richardson, R. A.; Dewhirst, M. W. Hypoxia and radiotherapy: Opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev. 2007, 26, 241–248.

    CAS  Google Scholar 

  59. [59]

    Song, G. S.; Liang, C.; Yi, X.; Zhao, Q.; Cheng, L.; Yang, K.; Liu, Z. Perfluorocarbon-loaded hollow Bi2Se3 nanoparticles for timely supply of oxygen under near-infrared light to enhance the radiotherapy of cancer. Adv. Mater. 2016, 28, 2716–2723.

    CAS  Google Scholar 

  60. [60]

    Li, Y.; Yun, K. H.; Lee, H.; Goh, S. H.; Suh, Y. G.; Choi, Y. Porous platinum nanoparticles as a high-Z and oxygen generating nanozyme for enhanced radiotherapy in vivo. Biomaterials 2019, 197, 12–19.

    CAS  Google Scholar 

  61. [61]

    Fan, W. P.; Bu, W. B.; Zhang, Z.; Shen, B.; Zhang, H.; He, Q. J.; Ni, D. L.; Cui, Z. W.; Zhao, K. L.; Bu, J. W. et al. X-ray radiation-controlled NO-release for on-demand depth-independent hypoxic radiosensitization. Angew. Chem., Int. Ed. 2015, 54, 14026–14030.

    CAS  Google Scholar 

  62. [62]

    Fan, W. P.; Lu, N.; Shen, Z. Y.; Tang, W.; Shen, B.; Cui, Z. W.; Shan, L. L.; Yang, Z.; Wang, Z. T.; Jacobson, O. et al. Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen-independent X-ray-activated synergistic therapy. Nat. Commun 2019, 10, 1241.

    Google Scholar 

  63. [63]

    Goswami, N.; Luo, Z. T.; Yuan, X.; Leong, D. T.; Xie, J. P. Engineering gold-based radiosensitizers for cancer radiotherapy. Mater. Horiz. 2017, 4, 817–831.

    CAS  Google Scholar 

  64. [64]

    Zeng, S. W.; Yong, K. T.; Roy, I.; Dinh, X. Q.; Yu, X.; Luan, F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 2011, 6, 491.

    CAS  Google Scholar 

  65. [65]

    Han, G.; Ghosh, P.; Rotello, V. M. Functionalized gold nanoparticles for drug delivery. Nanomedicine 2007, 2, 113–123.

    CAS  Google Scholar 

  66. [66]

    Luo, D.; Wang, X. N.; Zeng, S.; Ramamurthy, G.; Burda, C.; Basilion, J. P. Prostate-specific membrane antigen targeted gold nanoparticles for prostate cancer radiotherapy: Does size matter for targeted particles? Chem. Sci. 2019, 10, 8119–8128.

    CAS  Google Scholar 

  67. [67]

    Ma, N. N.; Wu, F. G.; Zhang, X. D.; Jiang, Y. W.; Jia, H. R.; Wang, H. Y.; Li, Y. H.; Liu, P. D.; Gu, N.; Chen, Z. Shape-dependent radiosensitization effect of gold nanostructures in cancer radiotherapy: Comparison of gold nanoparticles, nanospikes, and nanorods. ACS Appl. Mater. Interfaces 2017, 9, 13037–13048.

    CAS  Google Scholar 

  68. [68]

    Fathy, M. M.; Mohamed, F. S.; Elbialy, N. S.; Elshemey, W. M. Multifunctional Chitosan-Capped Gold Nanoparticles for enhanced cancer chemo-radiotherapy: An invitro study. Phys. Med. 2018, 48, 76–83.

    Google Scholar 

  69. [69]

    Yi, X.; Chen, L.; Chen, J.; Maiti, D.; Chai, Z. F.; Liu, Z.; Yang, K. Biomimetic copper sulfide for chemo-radiotherapy: Enhanced uptake and reduced efflux of nanoparticles for tumor cells under ionizing radiation. Adv. Funct. Mater. 2018, 28, 1705161.

    Google Scholar 

  70. [70]

    Butterworth, K. T.; Nicol, J. R.; Ghita, M.; Rosa, S.; Chaudhary, P.; McGarry, C. K.; McCarthy, H. O.; Jimenez-Sanchez, G.; Bazzi, R.; Roux, S. et al. Preclinical evaluation of gold-DTDTPA nanoparticles as theranostic agents in prostate cancer radiotherapy. Nanomedicine 2016, 77, 2035–2047.

    Google Scholar 

  71. [71]

    Dou, Y.; Guo, Y. Y.; Li, X. D.; Li, X.; Wang, S.; Wang, L.; Lv, G. X.; Zhang, X. N.; Wang, H. J.; Gong, X. Q. et al. Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy. ACS Nano 2016, 70, 2536–2548.

    Google Scholar 

  72. [72]

    Mignot, A.; Truillet, C.; Lux, F.; Sancey, L.; Louis, C.; Denat, F.; Boschetti, F.; Bocher, L.; Gloter, A.; Stéphan, O. et al. A top-down synthesis route to ultrasmall multifunctional Gd-based silica nanoparticles for theranostic applications. Chem.—Eur. J. 2013, 19, 6122–6136.

    CAS  Google Scholar 

  73. [73]

    Detappe, A.; Kunjachan, S.; Sancey, L.; Motto-Ros, V.; Biancur, D.; Drane, P.; Guieze, R.; Makrigiorgos, G. M.; Tillement, O.; Langer, R. et al. Advanced multimodal nanoparticles delay tumor progression with clinical radiation therapy. J. Controlled Release 2016, 238, 103–113.

    CAS  Google Scholar 

  74. [74]

    Peukert, D.; Kempson, I.; Douglass, M.; Bezak, E. Metallic nanoparticle radiosensitisation of ion radiotherapy: A review. Phys. Med. 2018, 47, 121–128.

    Google Scholar 

  75. [75]

    Liu, C. J.; Wang, C. H.; Chen, S. T.; Chen, H. H.; Leng, W. H.; Chien, C. C.; Wang, C. L.; Kempson, I. M.; Hwu, Y.; Lai, T. C. et al. Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys. Med. Biol. 2010, 55, 931–945.

    CAS  Google Scholar 

  76. [76]

    Polf, J. C.; Bronk, L. F.; Driessen, W. H. P.; Arap, W.; Pasqualini, R.; Gillin, M. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles. Appl. Phys. Lett. 2011, 98, 193702.

    Google Scholar 

  77. [77]

    Schlathölter, T.; Eustache, P.; Porcel, E.; Salado, D.; Stefancikova, L.; Tillement, O.; Lux, F.; Mowat, P.; Biegun, A. K.; van Goethem, M. J. et al. Improving proton therapy by metal-containing nanoparticles: Nanoscale insights. Int. J. Nanomedicine 2016, 11, 1549–1556.

    Google Scholar 

  78. [78]

    Kim, J. K.; Seo, S. J.; Kim, H. T.; Kim, K. H.; Chung, M. H.; Kim, K. R.; Ye, S. J. Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles. Phys. Med. Biol. 2012, 57, 8309–8323.

    Google Scholar 

  79. [79]

    Li, S.; Bouchy, S.; Penninckx, S.; Marega, R.; Fichera, O.; Gallez, B.; Feron, O.; Martinive, P.; Heuskin, A. C.; Michiels, C. et al. Antibody-functionalized gold nanoparticles as tumor-targeting radiosensitizers for proton therapy. Nanomedicine 2019, 14, 317–333.

    CAS  Google Scholar 

  80. [80]

    Heuskin, A. C.; Gallez, B.; Feron, O.; Martinive, P.; Michiels, C.; Lucas, S. Metallic nanoparticles irradiated by low-energy protons for radiation therapy: Are there significant physical effects to enhance the dose delivery? Med. Phys. 2017, 44, 4299–4312.

    CAS  Google Scholar 

  81. [81]

    Martínez-Rovira, I.; Prezado, Y. Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles. Med. Phys. 2015, 42, 6703–6710.

    Google Scholar 

  82. [82]

    Lin, Y. T.; Paganetti, H.; McMahon, S. J.; Schuemann, J. Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons, and kilovoltage photons. Med. Phys. 2015, 42, 5890–5902.

    CAS  Google Scholar 

  83. [83]

    Penninckx, S.; Heuskin, A. C.; Michiels, C.; Lucas, S. The role of thioredoxin reductase in gold nanoparticle radiosensitization effects. Nanomedicine 2018, 13, 2917–2937.

    CAS  Google Scholar 

  84. [84]

    Soloway, A. H.; Tjarks, W.; Barnum, B. A.; Rong, F. G.; Barth, R. F.; Codogni, I. M.; Wilson, J. G. The chemistry of neutron capture therapy. Chem. Rev. 1998, 98, 1515–1562.

    CAS  Google Scholar 

  85. [85]

    Hawthorne, M. F. The role of chemistry in the development of boron neutron capture therapy of cancer. Angew. Chem., Int. Ed. 1993, 32, 950–984.

    Google Scholar 

  86. [86]

    Barth, R. F.; Coderre, J. A.; Vicente, M. G. H.; Blue, T. E. Boron neutron capture therapy of cancer: Current status and future prospects. Clin. Cancer Res. 2005, 77, 3987–4002.

    Google Scholar 

  87. [87]

    Frederick Hawthorne, M.; Lee, M. W. A critical assessment of boron target compounds for boron neutron capture therapy. J. Neuro-Oncol. 2003, 62, 33–45.

    Google Scholar 

  88. [88]

    Kobayashi, T.; Kanda, K. Analytical calculation of boron-10 dosage in cell nucleus for neutron capture therapy. Radiat. Res. 1982, 91, 77–94.

    CAS  Google Scholar 

  89. [89]

    Barth, R. F.; Vicente, M. G. H.; Harling, O. K.; Kiger III, W. S.; Riley, K. J.; Binns, P. J.; Wagner, F. M.; Suzuki, M.; Aihara, T.; Kato, I. et al. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat. Oncol. 2012, 7, 146.

    Google Scholar 

  90. [90]

    Moss, R. L. Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT). Appl. Radiat. Isot. 2014, 88, 2–11.

    CAS  Google Scholar 

  91. [91]

    Takeuchi, I.; Nomura, K.; Makino, K. Hydrophobic boron compoundloaded poly(l-lactide-co-glycolide) nanoparticles for boron neutron capture therapy. Colloids Surf. B: Biointerfaces 2017, 159, 360–365.

    CAS  Google Scholar 

  92. [92]

    Wu, C. Y.; Lin, J. J.; Chang, W. Y.; Hsieh, C. Y.; Wu, C. C.; Chen, H. S.; Hsu, H. J.; Yang, A. S.; Hsu, M. H.; Kuo, W. Y. Development of theranostic active-targeting boron-containing gold nanoparticles for boron neutron capture therapy (BNCT). Colloids Surf. B: Biointerfaces 2019, 183, 110387.

    CAS  Google Scholar 

  93. [93]

    Gao, Z. Y.; Horiguchi, Y.; Nakai, K.; Matsumura, A.; Suzuki, M.; Ono, K.; Nagasaki, Y. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects. Biomaterials 2016, 104, 201–212.

    CAS  Google Scholar 

  94. [94]

    Kuthala, N.; Vankayala, R.; Li, Y. N.; Chiang, C. S.; Hwang, K. C. Engineering novel targeted boron-10-enriched theranostic nanomedicine to combat against murine brain tumors via MR imaging-guided boron neutron capture therapy. Adv. Mater. 2017, 29, 1700850.

    Google Scholar 

  95. [95]

    Deutsch, O. L.; Murray, B. W. Monte carlo dosimetry calculation for boron neutron-capture therapy in the treatment of brain tumors. Nucl. Technol. 1975, 26, 320–339.

    CAS  Google Scholar 

  96. [96]

    Kanda, K.; Kobayashi, T.; Ono, K.; Sato, T.; Shibata, T.; Ueno, Y.; Mishima, Y.; Hatanaka, H.; Nishiwaki, Y. Elimination of gamma rays from a thermal neutron field for medical and biological irradiation purposes, biological dosimetry. IAEA-SM-193/168, 1975.

  97. [97]

    Leach, J. K.; Van Tuyle, G.; Lin, P. S.; Schmidt-Ullrich, R.; Mikkelsen, R. B. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res. 2001, 61, 3894–3901.

    CAS  Google Scholar 

  98. [98]

    Salt, C.; Lennox, A. J.; Takagaki, M.; Maguire, J. A.; Hosmane, N. S. Boron and gadolinium neutron capture therapy. Russ. Chem. Bull. 2004, 53, 1871–1888.

    CAS  Google Scholar 

  99. [99]

    Dorozhkin, S. V.; Epple, M. Biological and medical significance of calcium phosphates. Angew. Chem., Int. Ed. 2002, 41, 3130–3146.

    CAS  Google Scholar 

  100. [100]

    Dewi, N.; Mi, P.; Yanagie, H.; Sakurai, Y.; Morishita, Y.; Yanagawa, M.; Nakagawa, T.; Shinohara, A.; Matsukawa, T.; Yokoyama, K. et al. In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent. J. Cancer Res. Clin. Oncol. 2016, 142, 767–775.

    CAS  Google Scholar 

  101. [101]

    Ghithan, S.; Roy, G.; Schuh, S. Design study of beam transport lines for BioLEIR facility at CERN. J. Instrum. 2017, 12, P09019.

    Google Scholar 

  102. [102]

    Suit, H.; DeLaney, T.; Goldberg, S.; Paganetti, H.; Clasie, B.; Gerweck, L.; Niemierko, A.; Hall, E.; Flanz, J.; Hallman, J. et al. Proton vs carbon ion beams in the definitive radiation treatment of cancer patients. Radiother. Oncol. 2010, 95, 3–22.

    CAS  Google Scholar 

  103. [103]

    Kaur, H.; Pujari, G.; Semwal, M. K.; Sarma, A.; Avasthi, D. K. In vitro studies on radiosensitization effect of glucose capped gold nanoparticles in photon and ion irradiation of HeLa cells. Nucl. Instrum. Meth. Phys. Res. Section B: Beam Int. Mater. Atoms 2013, 301, 7–11.

    CAS  Google Scholar 

  104. [104]

    Liu, Y.; Liu, X.; Jin, X. D.; He, P. B.; Zheng, X. G.; Ye, F.; Chen, W. Q.; Li, Q. The radiation enhancement of 15 nm citrate-capped gold nanoparticles exposed to 70 keV/µm carbon ions. J. Nanosci. Nanotechnol. 2016, 16, 2365–2370.

    CAS  Google Scholar 

  105. [105]

    Dale, R. G.; Jones, B. The clinical radiobiology of brachytherapy. Br. J. Radiol. 1998, 71, 465–483.

    CAS  Google Scholar 

  106. [106]

    Tanderup, K.; Ménard, C.; Polgar, C.; Lindegaard, J. C.; Kirisits, C.; Pötter, R. Advancements in brachytherapy. Adv. Drug Deliv. Rev. 2017, 109, 15–25.

    CAS  Google Scholar 

  107. [107]

    Rivard, M. J.; Coursey, B. M.; DeWerd, L. A.; Hanson, W. F.; Huq, M. S.; Ibbott, G. S.; Mitch, M. G.; Nath, R.; Williamson, J. F. Update of the AAPM task group No. 43 report—A revised AAPM protocol for brachytherapy dose calculations. Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, S430.

    Google Scholar 

  108. [108]

    Kee, D. L. C.; Gal, J.; Falk, A. T.; Schiappa, R.; Chand, M. E.; Gautier, M.; Doyen, J.; Hannoun-Levi, J. M. Brachytherapy versus external beam radiotherapy boost for prostate cancer: Systematic review with meta-analysis of randomized trials. Cancer Treat. Rev. 2018, 70, 265–271.

    Google Scholar 

  109. [109]

    Dicker, A. P.; Merrick, G. S.; Waterman, F. M.; Valicenti, R. K.; Gomella, L. G. Basic and Advanced Techniques in Prostate Brachytherapy; CRC Press: Boca Raton, FL, 2005.

    Google Scholar 

  110. [110]

    Elgqvist, J.; Frost, S.; Pouget, J. P.; Albertsson, P. The potential and hurdles of targeted alpha therapy—Clinical trials and beyond. Front. Oncol. 2014, 3, 324.

    Google Scholar 

  111. [111]

    Olafsen, T.; Elgqvist, J.; Wu, A. M. Protein targeting constructs in Alpha Therapy. Curr. Radiopharm. 2011, 4, 197–213.

    CAS  Google Scholar 

  112. [112]

    Sharkey, R. M.; Goldenberg, D. M. Cancer radioimmunotherapy. Immunotherapy 2011, 3, 349–370.

    Google Scholar 

  113. [113]

    Couturier, O.; Supiot, S.; Degraef-Mougin, M.; Faivre-Chauvet, A.; Carlier, T.; Chatal, J. F.; Davodeau, F.; Cherel, M. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 601–614.

    CAS  Google Scholar 

  114. [114]

    Dong, C.; Liu, Z.; Wang, F. Peptide-based radiopharmaceuticals for targeted tumor therapy. Curr. Med. Chem. 2014, 21, 139–152.

    CAS  Google Scholar 

  115. [115]

    Pool, S. E.; Krenning, E. P.; Koning, G. A.; van Eijck, C. H. J.; Teunissen, J. J. M.; Kam, B.; Valkema, R.; Kwekkeboom, D. J.; de Jong, M. Preclinical and clinical studies of peptide receptor radionuclide therapy. Semin. Nucl. Med. 2010, 40, 209–218.

    Google Scholar 

  116. [116]

    Müller, C.; Schibli, R. Prospects in folate receptor-targeted radionuclide therapy. Front. Oncol. 2013, 3, 249.

    Google Scholar 

  117. [117]

    Qhobosheane, M.; Santra, S.; Zhang, P.; Tan, W. H. Biochemically functionalized silica nanoparticles. Analyst 2001, 126, 1274–1278.

    CAS  Google Scholar 

  118. [118]

    Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779.

    CAS  Google Scholar 

  119. [119]

    Radovic-Moreno, A. F.; Chernyak, N.; Mader, C. C.; Nallagatla, S.; Kang, R. S.; Hao, L. L.; Walker, D. A.; Halo, T. L.; Merkel, T. J.; Rische, C. H. et al. Immunomodulatory spherical nucleic acids. Proc. Natl. Acad. Sci. 2015, 112, 3892–3897.

    CAS  Google Scholar 

  120. [120]

    Laprise-Pelletier, M.; Lagueux, J.; Côté, M. F.; LaGrange, T.; Fortin, M. A. Low-dose prostate cancer brachytherapy with radioactive palladium-gold nanoparticles. Adv. Healthc. Mater. 2017, 6, 1601120.

    Google Scholar 

  121. [121]

    Lacoeuille, F.; Arlicot, N.; Faivre-Chauvet, A. Targeted alpha and beta radiotherapy: An overview of radiopharmaceutical and clinical aspects. Méd. Nucl. 2018, 42, 32–44.

    Google Scholar 

  122. [122]

    De Kruijff, M. R.; Wolterbeek, T. H.; Denkova, G. A. A critical review of alpha radionuclide therapy—How to deal with recoiling daughters? Pharmaceuticals 2015, 8, 321–336.

    CAS  Google Scholar 

  123. [123]

    Kannan, R.; Zambre, A.; Chanda, N.; Kulkarni, R.; Shukla, R.; Katti, K.; Upendran, A.; Cutler, C.; Boote, E.; Katti, K. V. Functionalized radioactive gold nanoparticles in tumor therapy. WIREs Nanomedicine Nanobiotechnol. 2012, 4, 42–51.

    CAS  Google Scholar 

  124. [124]

    Al-Yasiri, A. Y.; Khoobchandani, M.; Cutler, C. S.; Watkinson, L.; Carmack, T.; Smith, C. J.; Kuchuk, M.; Loyalka, S. K.; Lugão, A. B.; Katti, K. V. Mangiferin functionalized radioactive gold nanoparticles (MGF−198AuNPs) in prostate tumor therapy: Green nanotechnology for production, in vivo tumor retention and evaluation of therapeutic efficacy. Dalton Trans. 2017, 46, 14561–14571.

    CAS  Google Scholar 

  125. [125]

    Chakravarty, R.; Chakraborty, S.; Guleria, A.; Shukla, R.; Kumar, C.; Vimalnath Nair, K. V.; Sarma, H. D.; Tyagi, A. K.; Dash, A. Facile one-pot synthesis of intrinsically radiolabeled and cyclic RGD conjugated 199Au nanoparticles for potential use in nanoscale brachytherapy. Ind. Eng. Chem. Res. 2018, 57, 14337–14346.

    CAS  Google Scholar 

  126. [126]

    Al-Yasiri, A. Y.; White, N. E.; Katti, K. V.; Loyalka, S. K. Estimation of tumor and local tissue dose in gold nanoparticles radiotherapy for prostate cancer. Rep. Pract. Oncol. Radiother. 2019, 24, 288–293.

    Google Scholar 

  127. [127]

    Fazaeli, Y.; Akhavan, O.; Rahighi, R.; Aboudzadeh, M. R.; Karimi, E.; Afarideh, H. In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures. Mater. Sci. Eng.: C 2014, 45, 196–204.

    CAS  Google Scholar 

  128. [128]

    Dash, A.; Pillai, M. R. A.; Knapp, F. F. Production of 177Lu for targeted radionuclide therapy: Available options. Nucl. Med. Mol. Imaging 2015, 49, 85–107.

    CAS  Google Scholar 

  129. [129]

    Yook, S.; Cai, Z. L.; Lu, Y. J.; Winnik, M. A.; Pignol, J. P.; Reilly, R. M. Intratumorally injected 177Lu-labeled gold nanoparticles: Gold nanoseed brachytherapy with application for neoadjuvant treatment of locally advanced breast cancer. J. Nucl. Med. 2016, 57, 936–942.

    CAS  Google Scholar 

  130. [130]

    Yu, B.; Wei, H.; He, Q. J.; Ferreira, C. A.; Kutyreff, C. J.; Ni, D. L.; Rosenkrans, Z. T.; Cheng, L.; Yu, F. Q.; Engle, J. W. et al. Efficient uptake of 177Lu-porphyrin-PEG nanocomplexes by tumor mitochondria for multimodal-imaging-guided combination therapy. Angew. Chem., Int. Ed. 2018, 57, 218–222.

    CAS  Google Scholar 

  131. [131]

    Yu, B.; Ni, D. L.; Rosenkrans, Z. T.; Barnhart, T. E.; Wei, H.; Ferreira, C. A.; Lan, X. L.; Engle, J. W.; He, Q. J.; Yu, F. Q. et al. A “missile-detonation” strategy to precisely supply and efficiently amplify cerenkov radiation energy for cancer theranostics. Adv. Mater. 2019, 31, 1904894.

    CAS  Google Scholar 

  132. [132]

    Meng, Z. Q.; Chao, Y.; Zhou, X. F.; Liang, C.; Liu, J. J.; Zhang, R.; Cheng, L.; Yang, K.; Pan, W.; Zhu, M. F. et al. Near-infrared-triggered in situ gelation system for repeatedly enhanced photothermal brachytherapy with a single dose. ACS Nano 2018, 12, 9412–9422.

    CAS  Google Scholar 

  133. [133]

    Sheng, J.; Wang, X. Y.; Yan, J. J.; Pan, D. H.; Yang, R. L.; Wang, L. Z.; Xu, Y. P.; Yang, M. Theranostic radioiodine-labelled melanin nanoparticles inspired by clinical brachytherapy seeds. J. Mater. Chem. B 2018, 6, 8163–8169.

    CAS  Google Scholar 

  134. [134]

    Kim, Y. S.; Brechbiel, M. W. An overview of targeted alpha therapy. Tumor Biol. 2012, 33, 573–590.

    CAS  Google Scholar 

  135. [135]

    Targeted Alpha Therapy Working Group. Targeted alpha therapy, an emerging class of cancer agents: A review. JAMA Oncol. 2018, 4, 1765–1772.

    Google Scholar 

  136. [136]

    Sattiraju, A.; Xiong, X. B.; Pandya, D. N.; Wadas, T. J.; Xuan, A.; Sun, Y.; Jung, Y.; Sai, K. K. S.; Dorsey, J. F.; Li, K. C. et al. Alpha particle enhanced blood brain/tumor barrier permeabilization in glioblastomas using integrin alpha-v beta-3-targeted liposomes. Mol. Cancer Ther. 2017, 16, 2191–2200.

    CAS  Google Scholar 

  137. [137]

    Shirley, M.; McCormack, P. L. Radium-223 dichloride: A review of its use in patients with castration-resistant prostate cancer with symptomatic bone metastases. Drugs 2014, 74, 579–586.

    CAS  Google Scholar 

  138. [138]

    McGann, S.; Horton, E. R. Radium-223 dichloride: A novel treatment option for castration-resistant prostate cancer patients with symptomatic bone metastases. Ann. Pharmacother. 2015, 49, 469–476.

    CAS  Google Scholar 

  139. [139]

    Piotrowska, A.; Męczyńska-Wielgosz, S.; Majkowska-Pilip, A.; Koźmiński, P.; Wójciuk, G.; Cędrowska, E.; Bruchertseifer, F.; Morgenstern, A.; Kruszewski, M.; Bilewicz, A. Nanozeolite bioconjugates labeled with 223Ra for targeted alpha therapy. Nucl. Med. Biol. 2017, 47, 10–18.

    CAS  Google Scholar 

  140. [140]

    Rojas, J. V.; Woodward, J. D.; Chen, N.; Rondinone, A. J.; Castano, C. H.; Mirzadeh, S. Synthesis and characterization of lanthanum phosphate nanoparticles as carriers for 223Ra and 225Ra for targeted alpha therapy. Nucl. Med. Biol. 2015, 42, 614–620.

    CAS  Google Scholar 

  141. [141]

    A. Scheinberg, D.; McDevitt, M. R. Actinium-225 in targeted alpha-particle therapeutic applications. Curr. Radiopharm. 2011, 4, 306–320.

    CAS  Google Scholar 

  142. [142]

    Cędrowska, E.; Pruszynski, M.; Majkowska-Pilip, A.; Męczyńska-Wielgosz, S.; Bruchertseifer, F.; Morgenstern, A.; Bilewicz, A. Functionalized TiO2 nanoparticles labelled with 225Ac for targeted alpha radionuclide therapy. J. Nanopart. Res. 2018, 20, 83.

    Google Scholar 

  143. [143]

    Sattiraju, A.; Pandya, D.; Wadas, T.; Xiong, X. B.; Sun, Y.; Jung, Y.; Zhao, D. W.; Solingapuram Sai, K.; Li, K.; Mintz, A. Alpha particle enhanced permeabilization of the blood tumor barrier using alpha-v beta-3 (αvβ3) specific nanoparticles. J. Nucl. Med. 2016, 57, 633.

    Google Scholar 

  144. [144]

    Chakraborty, S.; Vimalnath, K. V.; Sharma, K. S.; Rajeswari, A.; Sarma, H. D.; Ningthoujam, R. S.; Vatsa, R.; Dash, A. Synthesis and biological evaluation of holmium-166 Agglomerated iron oxide nanoparticles for treatment of arthritis of knee joints. J. Nucl. Med. 2016, 57, 1105.

    Google Scholar 

  145. [145]

    Cui, L.; Her, S.; Borst, G. R.; Bristow, R. G.; Jaffray, D. A.; Allen, C. Radiosensitization by gold nanoparticles: Will they ever make it to the clinic? Radiother. Oncol. 2017, 124, 344–356.

    CAS  Google Scholar 

  146. [146]

    Raymond, K. N.; Dertz, E. A. Biochemical and physical properties of siderophores. In Iron Transport in Bacteria. Crosa, J. H.; Mey, A. R.; Payne, S. M., Eds.; ASM Press: Washington, DC, 2004; pp 3–17.

    Google Scholar 

  147. [147]

    Verry, C.; Sancey, L.; Dufort, S.; Le Duc, G.; Mendoza, C.; Lux, F.; Grand, S.; Arnaud, J.; Quesada, J. L.; Villa, J. et al. Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: NANO-RAD, a phase I study protocol. BMJ Open 2019, 9, e023591.

    Google Scholar 

  148. [148]

    Bonvalot, S.; Rutkowski, P. L.; Thariat, J.; Carrère, S.; Ducassou, A.; Sunyach, M. P.; Agoston, P.; Hong, A.; Mervoyer, A.; Rastrelli, M. et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): A multicentre, phase 2–3, randomised, controlled trial. Lancet Oncol. 2019, 20, 1148–1159.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Nuclear Regulatory Commission under Faculty Development Grant NRC-HQ-84-14-G-0052 and from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division at LBNL under Contract DE-AC02-05CH11231, during the writing of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rebecca J. Abergel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pallares, R.M., Abergel, R.J. Nanoparticles for targeted cancer radiotherapy. Nano Res. 13, 2887–2897 (2020). https://doi.org/10.1007/s12274-020-2957-8

Download citation

Keywords

  • radiotherapy
  • targeted cancer radiotherapy
  • nanoparticles
  • cancer
  • targeted alpha therapy
  • external beam