Skip to main content

Hierarchical assemblies of molecular frameworks—MOF-on-MOF epitaxial heterostructures

Abstract

Functional, porous metal-organic frameworks (MOFs) have attracted much attention as a very flexible class of crystalline, porous materials. For more advanced applications that exploit photophysical properties, the fabrication of hierarchical assemblies, including the creation of MOF/MOF heterointerfaces, is important. For the manufacturing of superstructures with length scales well beyond that of the MOF pore size, layer-by-layer (lbl) methods are particularly attractive. These allow the isoreticular approach to be extended to superstructures with micrometer length scales, a range that is not accessible using conventional MOF design. The lbl approach further substantially extends the compositional diversity in MOFs. At the same time, the favorable elastic properties of MOFs allow for heteroepitaxial growth, even in the case of lattice misfits as large as 20%. While the MOF-on-MOF approach to designing multicomponent superstructures with synergistic multifunctionality can also be realized with sophisticated solvothermal synthesis schemes, the lbl (or liquid-phase epitaxy) approach carries substantial advantages, in particular when it comes to the integration of such MOF superstructures into optical or electronic devices. While the structure vertical to the substrate can be adjusted using the lbl method, photolithographic methods can be used for lateral structuring. In this review, we will discuss the lbl liquid-phase epitaxy approach to growing surface-anchored MOF thins films (SURMOFs) as well as other relevant one-pot synthesis methods for constructing such hierarchically designed structures and their emerging applications.

References

  1. [1]

    Yaghi, O. M. Reticular chemistry in all dimensions. ACS Cent. Sci.2019, 5, 1295–1300.

    CAS  Google Scholar 

  2. [2]

    Ockwig, N. W.; Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O. M. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res.2005, 38, 176–182.

    CAS  Google Scholar 

  3. [3]

    Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem., Int. Ed.2004, 43, 2334–2375.

    CAS  Google Scholar 

  4. [4]

    Haldar, R.; Maji, T. K. Metal-organic frameworks (MOFs) based on mixed linker systems: Structural diversities towards functional materials. CrystEngComm2013, 15, 9276–9295.

    CAS  Google Scholar 

  5. [5]

    Haldar, R.; Sikdar, N.; Maji, T. K. Interpenetration in coordination polymers: Structural diversities toward porous functional materials. Mater. Today2015, 18, 97–116.

    CAS  Google Scholar 

  6. [6]

    Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydin, A. Ö.; Hupp, J. T. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc.2012, 134, 15016–15021.

    CAS  Google Scholar 

  7. [7]

    Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W. Hydrogen storage in metal-organic frameworks. Chem. Rev.2012, 112, 782–835.

    CAS  Google Scholar 

  8. [8]

    Li, B.; Wen, H. M.; Zhou, W.; Chen, B. L. Porous metal-organic frameworks for gas storage and separation: What, how, and why? J. Phys. Chem. Lett.2014, 5, 3468–3479.

    CAS  Google Scholar 

  9. [9]

    Zhao, X.; Wang, Y. X.; Li, D. S.; Bu, X. H.; Feng, P. Y. Metal-organic frameworks for separation. Adv. Mater.2018, 30, 1705189.

    Google Scholar 

  10. [10]

    Hu, Z. G.; Wang, Y. X.; Shah, B. B.; Zhao, D. CO2 capture in metal-organic framework adsorbents: An engineering perspective. Adv. Sustain. Syst.2019, 3, 1800080.

    Google Scholar 

  11. [11]

    Huang, Y. B.; Liang, J.; Wang, X. S.; Cao, R. Multifunctional metal-organic framework catalysts: Synergistic catalysis and tandem reactions. Chem. Soc. Rev.2017, 46, 126–157.

    CAS  Google Scholar 

  12. [12]

    Zhu, L.; Liu, X. Q.; Jiang, H. L.; Sun, L. B. Metal-organic frameworks for heterogeneous basic catalysis. Chem. Rev.2017, 117, 8129–8176.

    CAS  Google Scholar 

  13. [13]

    Stavila, V.; Talin, A. A.; Allendorf, M. D. MOF-based electronic and opto-electronic devices. Chem. Soc. Rev.2014, 43, 5994–6010.

    CAS  Google Scholar 

  14. [14]

    Haldar, R.; Heinke, L.; Wöll, C. Advanced photoresponsive materials using the metal-organic framework approach. Adv. Mater.2020, 32, 1905227.

    CAS  Google Scholar 

  15. [15]

    Dolgopolova, E. A.; Rice, A. M.; Martin, C. R.; Shustova, N. B. Photochemistry and photophysics of MOFs: Steps towards MOF-based sensing enhancements. Chem. Soc. Rev.2018, 47, 4710–4728.

    CAS  Google Scholar 

  16. [16]

    Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev.2017, 46, 3242–3285.

    CAS  Google Scholar 

  17. [17]

    Begum, S.; Hassan, Z.; Brase, S.; Wöll, C.; Tsotsalas, M. Metal-organic framework-templated biomaterials: Recent progress in synthesis, functionalization, and applications. Acc. Chem. Res.2019, 52, 1598–1610.

    CAS  Google Scholar 

  18. [18]

    Lismont, M.; Dreesen, L.; Wuttke, S. Metal-organic framework nanoparticles in photodynamic therapy: Current status and perspectives. Adv. Funct. Mater.2017, 27, 1606314.

    Google Scholar 

  19. [19]

    Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science2002, 295, 469–472.

    CAS  Google Scholar 

  20. [20]

    Deng, H. X.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang, B.; Yaghi, O. M. Multiple functional groups of varying ratios in metal-organic frameworks. Science2010, 327, 846–850.

    CAS  Google Scholar 

  21. [21]

    Deng, H. X.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S. et al. Large-pore apertures in a series of metal-organic frameworks. Science2012, 336, 1018–1023.

    CAS  Google Scholar 

  22. [22]

    Wang, Z. B.; Liu, J. X.; Grosjean, S.; Wagner, D.; Guo, W.; Gu, Z. G.; Heinke, L.; Gliemann, H.; Brase, S.; Wöll, C. Monolithic, crystalline MOF coating: An excellent patterning and photoresist material. ChemNanoMat2015, 1, 338–345.

    CAS  Google Scholar 

  23. [23]

    Gliemann, H.; Wöll, C. Epitaxially grown metal-organic frameworks. Mater. Today2012, 15, 110–116.

    CAS  Google Scholar 

  24. [24]

    Shekhah, O.; Wang, H.; Kowarik, S.; Schreiber, F.; Paulus, M.; Tolan, M.; Sternemann, C.; Evers, F.; Zacher, D.; Fischer, R. A. et al. Step-by-step route for the synthesis of metal-organic frameworks. J. Am. Chem. Soc.2007, 129, 15118–15119.

    CAS  Google Scholar 

  25. [25]

    Liu, J. X.; Wöll, C. Surface-supported metal-organic framework thin films: Fabrication methods, applications, and challenges. Chem. Soc. Rev.2017, 46, 5730–5770.

    CAS  Google Scholar 

  26. [26]

    Shekhah, O.; Liu, J.; Fischer, R. A.; Wöll, C. MOF thin films: Existing and future applications. Chem. Soc. Rev.2011, 40, 1081–1106.

    CAS  Google Scholar 

  27. [27]

    Kong, X. Q.; Deng, H. X.; Yan, F. Y.; Kim, J.; Swisher, J. A.; Smit, B.; Yaghi, O. M.; Reimer, J. A. Mapping of functional groups in metal-organic frameworks. Science2013, 341, 882–885.

    CAS  Google Scholar 

  28. [28]

    Furukawa, S.; Hirai, K.; Nakagawa, K.; Takashima, Y.; Matsuda, R.; Tsuruoka, T.; Kondo, M.; Haruki, R.; Tanaka, D.; Sakamoto, H. et al. Heterogeneously hybridized porous coordination polymer crystals: Fabrication of heterometallic core-shell single crystals with an in-plane rotational epitaxial relationship. Angew. Chem., Int. Ed.2009, 48, 1766–1770.

    CAS  Google Scholar 

  29. [29]

    Liu, J. X.; Lukose, B.; Shekhah, O.; Arslan, H. K.; Weidler, P.; Gliemann, H.; Brase, S.; Grosjean, S.; Godt, A.; Feng, X. L. et al. A novel series of isoreticular metal organic frameworks: Realizing metastable structures by liquid phase epitaxy. Sci. Rep.2012, 2, 921.

    Google Scholar 

  30. [30]

    Valadez Sánchez, E. P.; Gliemann, H.; Haas-Santo, K.; Wöll, C.; Dittmeyer, R. ZIF-8 SURMOF membranes synthesized by Au-assisted liquid phase epitaxy for application in gas separation. Chem. Ingen. Tech.2016, 88, 1798–1805.

    Google Scholar 

  31. [31]

    Hashem, T.; Valadez Sánchez, E. P.; Weidler, P. G.; Gliemann, H.; Alkordi, M. H.; Wöll, C. Front cover: Liquid-phase quasi-epitaxial growth of highly stable, monolithic UiO-66-NH2 MOF thin films on solid substrates (ChemistryOpen 5/2020). ChemistryOpen2020, 9, 521.

    CAS  Google Scholar 

  32. [32]

    Shekhah, O.; Hirai, K.; Wang, H.; Uehara, H.; Kondo, M.; Diring, S.; Zacher, D.; Fischer, R. A.; Sakata, O.; Kitagawa, S. et al. MOF-on-MOF heteroepitaxy: Perfectly oriented [Zn2(ndc)2(dabco)]n grown on [Cu2(ndc)2(dabco)]n thin films. Dalton Trans. 2011, 40, 4954–4958.

    CAS  Google Scholar 

  33. [33]

    Chun, H.; Dybtsev, D. N.; Kim, H.; Kim, K. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: Implications for hydrogen storage in porous materials. Chem.—Eur. J.2005, 11, 3521–3529.

    CAS  Google Scholar 

  34. [34]

    Seki, K.; Mori, W. Syntheses and characterization of microporous coordination polymers with open frameworks. J. Phys. Chem. B2002, 106, 1380–1385.

    CAS  Google Scholar 

  35. [35]

    Tang, S. J.; Lee, C. Y.; Huang, C. C.; Chang, T. R.; Cheng, C. M.; Tsuei, K. D.; Jeng, H. T.; Yeh, V.; Chiang, T. C. Electronic versus lattice match for metal-semiconductor epitaxial growth: Pb on Ge(111). Phys. Rev. Lett.2011, 107, 066802.

    Google Scholar 

  36. [36]

    Li, H. L.; Eddaoudi, M.; Groy, T. L.; Yaghi, O. M. Establishing microporosity in open metal-organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J. Am. Chem. Soc.1998, 120, 8571–8572.

    CAS  Google Scholar 

  37. [37]

    Haldar, R.; Batra, K.; Marschner, S. M.; Kuc, A. B.; Zahn, S.; Fischer, R. A.; Brase, S.; Heine, T.; Wöll, C. Bridging the green gap: Metal-organic framework heteromultilayers assembled from porphyrinic linkers identified by using computational screening. Chem.—Eur. J.2019, 25, 7847–7851.

    CAS  Google Scholar 

  38. [38]

    Haldar, R.; Mazel, A.; Joseph, R.; Adams, M.; Howard, I. A.; Richards, B. S.; Tsotsalas, M.; Redel, E.; Diring, S.; Odobel, F. et al. Excitonically coupled states in crystalline coordination networks. Chem.—Eur. J.2017, 23, 14316–14322.

    CAS  Google Scholar 

  39. [39]

    Liu, J. X.; Zhou, W. C.; Liu, J. X.; Howard, I.; Kilibarda, G.; Schlabach, S.; Coupry, D.; Addicoat, M.; Yoneda, S.; Tsutsui, Y. et al. Photoinduced charge-carrier generation in epitaxial MOF thin films: High efficiency as a result of an indirect electronic band gap? Angew. Chem., Int. Ed.2015, 54, 7441–7445.

    CAS  Google Scholar 

  40. [40]

    Liu, J. X.; Zhou, W. C.; Liu, J. X.; Fujimori, Y.; Higashino, T.; Imahori, H.; Jiang, X.; Zhao, J. J.; Sakurai, T.; Hattori, Y. et al. A new class of epitaxial porphyrin metal-organic framework thin films with extremely high photocarrier generation efficiency: Promising materials for all-solid-state solar cells. J. Mater. Chem. A2016, 4, 12739–12747.

    CAS  Google Scholar 

  41. [41]

    Haldar, R.; Diring, S.; Samanta, P. K.; Muth, M.; Clancy, W.; Mazel, A.; Schlabach, S.; Kirschhöfer, F.; Brenner-Weiß, G.; Pati, S. K. et al. Enhancing selectivity and kinetics in oxidative photocyclization by supramolecular control. Angew. Chem., Int. Ed.2018, 57, 13662–13665.

    CAS  Google Scholar 

  42. [42]

    Wang, Z. B.; Liu, J. X.; Lukose, B.; Gu, Z. G.; Weidler, P. G.; Gliemann, H.; Heine, T.; Wöll, C. Nanoporous designer solids with huge lattice constant gradients: Multiheteroepitaxy of metal-organic frameworks. Nano Lett.2014, 14, 1526–1529.

    CAS  Google Scholar 

  43. [43]

    Wang, Z.; Wannapaiboon, S.; Rodewald, K.; Tu, M.; Rieger, B.; Fischer, R. A. Directing the hetero-growth of lattice-mismatched surface-mounted metal-organic frameworks by functionalizing the interface. J. Mater. Chem. A2018, 6, 21295–21303.

    CAS  Google Scholar 

  44. [44]

    Tu, M.; Fischer, R. A. Heteroepitaxial growth of surface mounted metal-organic framework thin films with hybrid adsorption functionality. J. Mater. Chem. A2014, 2, 2018–2022.

    CAS  Google Scholar 

  45. [45]

    Heinke, L.; Cakici, M.; Dommaschk, M.; Grosjean, S.; Herges, R.; Brase, S.; Wöll, C. Photoswitching in two-component surface-mounted metal-organic frameworks: Optically triggered release from a molecular container. ACS Nano2014, 8, 1463–1467.

    CAS  Google Scholar 

  46. [46]

    Meilikhov, M.; Furukawa, S.; Hirai, K.; Fischer, R. A.; Kitagawa, S. Binary janus porous coordination polymer coatings for sensor devices with tunable analyte affinity. Angew. Chem., Int. Ed.2013, 52, 341–345.

    CAS  Google Scholar 

  47. [47]

    Ikigaki, K.; Okada, K.; Tokudome, Y.; Toyao, T.; Falcaro, P.; Doonan, C. J.; Takahashi, M. MOF-on-MOF: Oriented growth of multiple layered thin films of metal-organic frameworks. Angew. Chem., Int. Ed.2019, 58, 6886–6890.

    CAS  Google Scholar 

  48. [48]

    Falcaro, P.; Okada, K.; Hara, T.; Ikigaki, K.; Tokudome, Y.; Thornton, A. W.; Hill, A. J.; Williams, T.; Doonan, C.; Takahashi, M. Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth. Nat. Mater.2017, 16, 342–348.

    CAS  Google Scholar 

  49. [49]

    Raišys, S.; Kazlauskas, K.; Juršėnas, S.; Simon, Y. C. The role of triplet exciton diffusion in light-upconverting polymer glasses. ACS Appl. Mater. Interfaces2016, 8, 15732–15740.

    Google Scholar 

  50. [50]

    Oldenburg, M.; Turshatov, A.; Busko, D.; Wollgarten, S.; Adams, M.; Baroni, N.; Welle, A.; Redel, E.; Wöll, C.; Richards, B. S. et al. Photon upconversion at crystalline organic-organic heterojunctions. Adv. Mater.2016, 28, 8477–8482.

    CAS  Google Scholar 

  51. [51]

    Haldar, R.; Jakoby, M.; Mazel, A.; Zhang, Q.; Welle, A.; Mohamed, T.; Krolla, P.; Wenzel, W.; Diring, S.; Odobel, F. et al. Anisotropic energy transfer in crystalline chromophore assemblies. Nat. Commun.2018, 9, 4332.

    Google Scholar 

  52. [52]

    Haldar, R.; Batra, K.; Marschner, S. M.; Kuc, A. B.; Zahn, S.; Fischer, R. A.; Brase, S.; Heine, T.; Wöll, C. Bridging the green gap: Metal-organic framework heteromultilayers assembled from porphyrinic linkers identified by using computational screening. Chem.—Eur. J.2019, 25, 7847–7851.

    CAS  Google Scholar 

  53. [53]

    Park, H. J.; So, M. C.; Gosztola, D.; Wiederrecht, G. P.; Emery, J. D.; Martinson, A. B. F.; Er, S.; Wilmer, C. E.; Vermeulen, N. A.; Aspuru-Guzik, A. et al. Layer-by-layer assembled films of perylene diimide-and Squaraine-containing metal-organic framework-like materials: Solar energy capture and directional energy transfer. ACS Appl. Mater. Interfaces2016, 8, 24983–24988.

    CAS  Google Scholar 

  54. [54]

    Chen, D. H.; Haldar, R.; Neumeier, B. L.; Fu, Z. H.; Feldmann, C.; Wöll, C.; Redel, E. Tunable emission in heteroepitaxial Ln-SURMOFs. Adv. Funct. Mater.2019, 29, 1903086.

    Google Scholar 

  55. [55]

    Rocha, J.; Carlos, L. D.; Paz, F. A. A.; Ananias, D. Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem. Soc. Rev.2011, 40, 926–940.

    CAS  Google Scholar 

  56. [56]

    Mohapatra, S.; Adhikari, S.; Riju, H.; Maji, T. K. Terbium(III), europium(III), and mixed terbium(III)-europium(III) mucicate frameworks: Hydrophilicity and stoichiometry-dependent color tunability. Inorg. Chem.2012, 51, 4891–4893.

    CAS  Google Scholar 

  57. [57]

    Liu, J. X.; Redel, E.; Walheim, S.; Wang, Z. B.; Oberst, V.; Liu, J. X.; Heissler, S.; Welle, A.; Moosmann, M.; Scherer, T. et al. Monolithic high performance surface anchored metal-organic framework Bragg reflector for optical sensing. Chem Mater.2015, 27, 1991–1996.

    CAS  Google Scholar 

  58. [58]

    Zhang, Z. J.; Müller, K.; Heidrich, S.; Koenig, M.; Hashem, T.; Schlöder, T.; Bléger, D.; Wenzel, W.; Heinke, L. Light-switchable one-dimensional photonic crystals based on MOFs with photomodulatable refractive index. J. Phys. Chem. Lett.2019, 10, 6626–6633.

    CAS  Google Scholar 

  59. [59]

    Furukawa, S.; Hirai, K.; Takashima, Y.; Nakagawa, K.; Kondo, M.; Tsuruoka, T.; Sakata, O.; Kitagawa, S. A block PCP crystal: Anisotropic hybridization of porous coordination polymers by face-selective epitaxial growth. Chem. Commun.2009, 5097–5099.

  60. [60]

    Li, T.; Sullivan, J. E.; Rosi, N. L. Design and preparation of a core-shell metal-organic framework for selective CO2 capture. J. Am. Chem. Soc.2013, 135, 9984–9987.

    CAS  Google Scholar 

  61. [61]

    Mutruc, D.; Goulet-Hanssens, A.; Fairman, S.; Wahl, S.; Zimathies, A.; Knie, C.; Hecht, S. Modulating guest uptake in core-shell MOFs with visible light. Angew. Chem., Int. Ed.2019, 58, 12862–12867.

    CAS  Google Scholar 

  62. [62]

    Silvestre, M. E.; Franzreb, M.; Weidler, P. G.; Shekhah, O.; Wöll, C. Magnetic cores with porous coatings: Growth of metal-organic frameworks on particles using liquid phase epitaxy. Adv. Funct. Mater.2013, 23, 1210–1213.

    CAS  Google Scholar 

  63. [63]

    Schmitt, S.; Silvestre, M.; Tsotsalas, M.; Winkler, A. L.; Shahnas, A.; Grosjean, S.; Laye, F.; Gliemann, H.; Lahann, J.; Brase, S. et al. Hierarchically functionalized magnetic core/multishell particles and their postsynthetic conversion to polymer capsules. ACS Nano2015, 9, 4219–4226.

    CAS  Google Scholar 

  64. [64]

    Son, J.; Lee, H. J.; Oh, M. Systematic formation of multilayered core-shell microspheres through the multistep growth of coordination polymers. Chem.—Eur. J.2013, 19, 6546–6550.

    CAS  Google Scholar 

  65. [65]

    Lee, H. J.; Cho, Y. J.; Cho, W.; Oh, M. Controlled isotropic or anisotropic nanoscale growth of coordination polymers: Formation of hybrid coordination polymer particles. ACS Nano2013, 7, 491–499.

    Google Scholar 

  66. [66]

    Yang, X. Y.; Yuan, S.; Zou, L. F.; Drake, H.; Zhang, Y. M.; Qin, J. S.; Alsalme, A.; Zhou, H. C. One-step synthesis of hybrid core-shell metal-organic frameworks. Angew. Chem., Int. Ed.2018, 57, 3927–3932.

    CAS  Google Scholar 

  67. [67]

    Kim, D.; Lee, G.; Oh, S.; Oh, M. Unbalanced MOF-on-MOF growth for the production of a lopsided core-shell of MIL-88B@MIL-88A with mismatched cell parameters. Chem. Commun.2019, 55, 43–46.

    CAS  Google Scholar 

  68. [68]

    Hirai, K.; Furukawa, S.; Kondo, M.; Uehara, H.; Sakata, O.; Kitagawa, S. Sequential functionalization of porous coordination polymer crystals. Angew. Chem., Int. Ed.2011, 50, 8057–8061.

    CAS  Google Scholar 

  69. [69]

    Kwon, O.; Kim, J. Y.; Park, S.; Lee, J. H.; Ha, J.; Park, H.; Moon, H. R.; Kim, J. Computer-aided discovery of connected metal-organic frameworks. Nat. Commun.2019, 70, 3620.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—2082/1—390761711 and SPP 1928 “COORNETS.” We thank Xiaojing Liu for comments on the manuscript.

Funding

Open access funding provided by Projekt DEAL

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christof Wöll.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haldar, R., Wöll, C. Hierarchical assemblies of molecular frameworks—MOF-on-MOF epitaxial heterostructures. Nano Res. 14, 355–368 (2021). https://doi.org/10.1007/s12274-020-2953-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2953-z

Keywords

  • metal-organic framework (MOF) heterostructure
  • hierarchical assembly
  • epitaxy
  • layer-by-layer growth
  • surface-anchored MOFs