Skip to main content
Log in

Intercalation and hybrid heterostructure integration of two-dimensional atomic crystals with functional organic semiconductor molecules

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Van der Waals (vdW) integration affords semiconductor heterostructures without constrains of lattice matching and opens up a new realm of functional devices by design. A particularly interesting approach is the electrochemical intercalation of two-dimensional (2D) atomic crystal and formation of superlattices, which can provide scalable production of novel vdW heterostructures. However, this approach has been limited to the use of organic cations with non-functional aliphatic chains, therefore failed to take the advantage of the vast potentials in molecular functionalities (electronic, photonic, magnetic, etc.). Here we report the integration of 2D crystal (MoS2, WS2, highly oriented pyrolytic graphite (HOPG), WSe2 as model systems) with electrochemically inert organic molecules that possess semiconducting characteristics (including perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), pentacene and fullerene), through on-chip electrochemical intercalation. An unprecedented long-range spatial feature of intercalation has been achieved, which allowed facile assembly of a vertical MoS2-PTCDA-Si junction. The intercalated heterostructure shows significant modulation of the lateral transport, and leads to a molecular tunneling characteristic at the vertical direction. The general intercalation of charge neutral and functional molecules defines a versatile platform of inorganic/organic hybrid vdW heterostructures with significantly extended molecular functional building blocks, holding great promise in future design of nano/quantum devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    CAS  Google Scholar 

  2. Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474.

    CAS  Google Scholar 

  3. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

    CAS  Google Scholar 

  4. Sarkar, D.; Liu, W.; Xie, X. J.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 2014, 8, 3992–4003.

    CAS  Google Scholar 

  5. Cui, S. M.; Pu, H. H.; Wells, S. A.; Wen, Z. H.; Mao, S.; Chang, J. B.; Hersam, M. C.; Chen, J. H. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 2015, 6, 8632.

    CAS  Google Scholar 

  6. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    CAS  Google Scholar 

  7. Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

    CAS  Google Scholar 

  8. Liu, Y.; Huang, Y.; Duan, X. F. van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323–333.

    CAS  Google Scholar 

  9. Zhang, J. S.; Yang, A. K.; Wu, X.; van de Groep, J.; Tang, P. Z.; Li, S. R.; Liu, B. F.; Shi, F. F.; Wan, J. Y.; Li, Q. T.; Sun, Y. M. et al. Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nat. Commun. 2018, 9, 5289.

    CAS  Google Scholar 

  10. Gong, Y. J.; Yuan, H. T.; Wu, C. L.; Tang, P. Z.; Yang, S. Z.; Yang, A. K.; Li, G. D.; Liu, B. F.; van de Groep, J.; Brongersma, M. L.; Chisholm, M. F. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 2018, 13, 294–299.

    CAS  Google Scholar 

  11. Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625–628.

    CAS  Google Scholar 

  12. Yu, Y. F.; Nam, G. H.; He, Q. Y.; Wu, X. J.; Zhang, K.; Yang, Z. Z.; Chen, J. Z.; Ma, Q. L.; Zhao, M. T.; Liu, Z. Q. et al. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638–643.

    CAS  Google Scholar 

  13. Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853–7856.

    CAS  Google Scholar 

  14. Tarasov, A.; Zhang, S. Y.; Tsai, M. Y.; Campbell, P. M.; Graham, S.; Barlow, S.; Marder, S. R.; Vogel, E. M. Controlled doping of large-area trilayer MoS2 with molecular reductants and oxidants. Adv. Mater. 2015, 27, 1175–1181.

    CAS  Google Scholar 

  15. Shin, H. J.; Choi, W. M.; Choi, D.; Han, G. H.; Yoon, S. M.; Park, H. K.; Kim, S. W.; Jin, Y. W.; Lee, S. Y.; Kim, J. M. et al. Control of electronic structure of graphene by various dopants and their effects on a nanogenerator. J. Am. Chem. Soc. 2010, 132, 15603–15609.

    CAS  Google Scholar 

  16. Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

    CAS  Google Scholar 

  17. Fang, H.; Battaglia, C.; Carraro, C.; Nemsak, S.; Ozdol, B.; Kang, J. S.; Bechtel, H. A.; Desai, S. B.; Kronast, F.; Unal, A. A. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA 2014, 111, 6198–6202.

    CAS  Google Scholar 

  18. Cui, X.; Shih, E. M.; Jauregui, L. A.; Chae, S. H.; Kim, Y. D.; Li, B. C.; Seo, D.; Pistunova, K.; Yin, J.; Park, J. H. et al. Low-temperature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 2017, 17, 4781–4786.

    CAS  Google Scholar 

  19. Wang, M.; Cai, S. H.; Pan, C.; Wang, C. Y.; Lian, X. J.; Zhuo, Y.; Xu, K.; Cao, T. J.; Pan, X. Q.; Wang, B. G. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 2018, 1, 130.

    CAS  Google Scholar 

  20. Bediako, D. K.; Rezaee, M.; Yoo, H.; Larson, D. T.; Zhao, S. Y. F.; Taniguchi, T.; Watanabe, K.; Brower-Thomas, T. L.; Kaxiras, E.; Kim, P. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 2018, 558, 425–429.

    CAS  Google Scholar 

  21. Chen, Z. X.; Leng, K.; Zhao, X. X.; Malkhandi, S.; Tang, W.; Tian, B. B.; Dong, L.; Zheng, L. R.; Lin, M.; Yeo, B. S. et al. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nat. Commun. 2017, 8, 14548.

    CAS  Google Scholar 

  22. Wan, C. L.; Gu, X. K.; Dang, F.; Itoh, T.; Wang, Y. F.; Sasaki, H.; Kondo, M.; Koga, K.; Yabuki, K.; Snyder, G. J. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 2015, 14, 622–627.

    CAS  Google Scholar 

  23. Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231–236.

    CAS  Google Scholar 

  24. Lin, Z. Y.; Liu, Y.; Halim, U.; Ding, M. N.; Liu, Y. Y.; Wang, Y. L.; Jia, C. C.; Chen, P.; Duan, X. D.; Wang, C. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254–258.

    CAS  Google Scholar 

  25. He, Q. Y.; Lin, Z. Y.; Ding, M. N.; Yin, A. X.; Halim, U.; Wang, C.; Liu, Y.; Cheng, H. C.; Huang, Y.; Duan, X. X. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 2019, 19, 6819–6826.

    CAS  Google Scholar 

  26. Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

    CAS  Google Scholar 

  27. Gangilenka, V. R.; Titova, L. V.; Smith, L. M.; Wagner, H. P.; DeSilva, L. A. A.; Gisslén, L.; Scholz, R. Selective excitation of exciton transitions in PTCDA crystals and films. Phys. Rev. B 2010, 81, 155208.

    Google Scholar 

  28. Ding, M. N.; He, Q. Y.; Wang, G. M.; Cheng, H. C.; Huang, Y.; Duan, X. F. An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces. Nat. Commun. 2015, 6, 7867.

    CAS  Google Scholar 

  29. Ding, M. N.; Shiu, H. Y.; Li, S. L.; Lee, C. K.; Wang, G. M.; Wu, H.; Weiss, N. O.; Young, T. D.; Weiss, P. S.; Wong, G. C. L. et al. Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in Shewanella and Geobacter. ACS Nano 2016, 10, 9919–9926.

    CAS  Google Scholar 

  30. Ding, M. N.; Zhong, G. Y.; Zhao, Z. P.; Huang, Z. H.; Li, M. F.; Shiu, H. Y.; Liu, Y.; Shakir, I.; Huang, Y.; Duan, X. F. On-chip in situ monitoring of competitive interfacial anionic chemisorption as a descriptor for oxygen reduction kinetics. ACS Cent. Sci. 2018, 4, 590–599.

    CAS  Google Scholar 

  31. Perera, M. M.; Lin, M. W.; Chuang, H. J.; Chamlagain, B. P.; Wang, C. Y.; Tan, X. B.; Cheng, M. M. C.; Tománek, D.; Zhou, Z. X. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 2013, 7, 4449–4458.

    CAS  Google Scholar 

  32. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

    CAS  Google Scholar 

  33. Zhanpeisov, N. U.; Nishio, S.; Fukumura, H. Density functional theory study of vibrational properties of the 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) molecule: IR, Raman, and UV-vis spectra. Int. J. Quantum Chem. 2005, 105, 368–375.

    CAS  Google Scholar 

  34. Lin, J. D.; Han, C.; Wang, F.; Wang, R.; Xiang, D.; Qin, S. Q.; Zhang, X. A.; Wang, L.; Zhang, H.; Wee, A. T. S. et al. Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 2014, 8, 5323–5329.

    CAS  Google Scholar 

  35. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116.

    CAS  Google Scholar 

  36. Hestand, N. J.; Spano, F. C. Expanded theory of H- and J-molecular aggregates: The effects of vibronic coupling and intermolecular charge transfer. Chem. Rev. 2018, 118, 7069–7163.

    CAS  Google Scholar 

  37. Kaushik, N.; Karmakar, D.; Nipane, A.; Karande, S.; Lodha, S. Interfacial n-doping using an ultrathin TiO2 layer for contact resistance reduction in MoS2. ACS Appl. Mater. Interfaces 2016, 8, 256–263.

    CAS  Google Scholar 

  38. Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

    CAS  Google Scholar 

  39. Ji, D. X.; Cai, S. H.; Paudel, T. R.; Sun, H. Y.; Zhang, C. C.; Han, L.; Wei, Y. F.; Zang, Y. P.; Gu, M.; Zhang, Y. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 2019, 570, 87–90.

    CAS  Google Scholar 

  40. Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70–74.

    CAS  Google Scholar 

  41. Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391–396.

    CAS  Google Scholar 

  42. Martin, J. M.; Vacher, B.; Ponsonnet, L.; Dupuis, V. Chemical bond mapping of carbon by image-spectrum EELS in the second derivative mode. Ultramicroscopy 1996, 65, 229–238.

    CAS  Google Scholar 

  43. Li, W. S.; Zhou, J.; Cai, S. H.; Yu, Z. H.; Zhang, J. L.; Fang, N.; Li, T. T.; Wu, Y.; Chen, T. S.; Xie, X. Y. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2019, 2, 563–571.

    CAS  Google Scholar 

  44. Liu, Y. P.; Yuan, L.; Yang, M.; Zheng, Y.; Li, L. J.; Gao, L. B.; Nerngchamnong, N.; Nai, C. T.; Sangeeth, C. S. S.; Feng, Y. P. et al. Giant enhancement in vertical conductivity of stacked CVD graphene sheets by self-assembled molecular layers. Nat. Commun. 2014, 5, 5461.

    CAS  Google Scholar 

  45. Jia, C. C.; Famili, M.; Carlotti, M.; Liu, Y.; Wang, P. Q.; Grace, I. M.; Feng, Z. Y.; Wang, Y. L.; Zhao, Z. P.; Ding, M. N. et al. Quantum interference mediated vertical molecular tunneling transistors. Sci. Adv. 2018, 4, eaat8237.

    CAS  Google Scholar 

Download references

Acknowledgements

M. D. acknowledges the support by the Fundamental Research Funds for the Central Universities in China (No. 020514380224), Natural Science Foundation of Jiangsu Province (No. BK20180321), and instrument/technical support from State Key Lab of Analytical Chemistry for Life Science, and State Key Lab of Coordination Chemistry. P. W. and S. C acknowledge funding from the National Natural Science Foundation of China (No. 11874199), the National Basic Research Program of China, (No. 2015CB654901); X. W. acknowledges funding support by the National Natural Science Foundation of China (Nos. 61734003, 61521001, 51861145202, 61861166001, and 61851401), the National Key Basic Research Program of China (No. 2015CB921600), Strategic Priority Research Program of Chinese Academy of Sciences XDB 30000000, Key Laboratory of Advanced Photonic and Electronic Materials, Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, and the Fundamental Research Funds for the Central Universities, China. S. H. C. acknowledges the support by the Program A for Outstanding PhD candidate of Nanjing University (No. 201801A013) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX18_0045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengning Ding, Peng Wang or Xinran Wang.

Electronic Supplementary Material

12274_2020_2948_MOESM1_ESM.pdf

Intercalation and hybrid heterostructure integration of two-dimensional atomic crystals with functional organic semiconductor molecules

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Zang, H., Cai, S. et al. Intercalation and hybrid heterostructure integration of two-dimensional atomic crystals with functional organic semiconductor molecules. Nano Res. 13, 2917–2924 (2020). https://doi.org/10.1007/s12274-020-2948-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2948-9

Keywords

Navigation