Skip to main content
Log in

Efficient synthesis of lithium rare-earth tetrafluoride nanocrystals via a continuous flow method

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As an important upconversion illuminant material, LiREF4 nanocrystals were efficiently synthesized in a continuous reactor with the assistant of a new precursor solution. The employed trioctylamine solvent in the solution had a strong interaction with HF, and helped to avoid the generation of unnecessary solid components as LiF and NH4REF4 during the reaction. A silicon carbide reactor was developed to carry out the synthesis reaction, where LiYF4:Yb,Er/Ho/Tm quickly nucleated in 5 min at 300 °C. The reaction time to successfully prepare 15 nm sized nanocrystals was less than 30 min, and the space-time yield of the flow synthesis method was 14.8 times that of a control group batch reaction. The prepared nanocrystals had a strong illuminant ability, which could find its use in the area of security mark printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Y. Upconversion luminescent materials: Advances and applications. Chem. Rev.2015, 115, 395–465.

    CAS  Google Scholar 

  2. Yang, B. X.; Wang, Y. B.; Wei, T.; Pan, Y.; Zhou, E. L.; Yuan, Z.; Han, Y. D.; Li, M. X.; Ling, X. C.; Yin, L. S. et al. Solution-processable near-infrared-responsive composite of perovskite nanowires and photon-upconversion nanoparticles. Adv. Funct. Mater.2018, 28, 1801782.

    Google Scholar 

  3. Soni, A. K.; Rai, V. K. SrMoO4:Er3+-Yb3+ upconverting phosphor for photonic and forensic applications. Solid State Sci.2016, 58, 129–137.

    CAS  Google Scholar 

  4. Hlaváček, A.; Křivánková, J.; Přikryl, J.; Foret, F. Photon-upconversion barcoding with multiple barcode channels: Application for droplet microfluidics. Anal. Chem.2019, 91, 12630–12635.

    Google Scholar 

  5. Hong, E. L.; Liu, L. M.; Bai, L. M.; Xia, C. H.; Gao, L.; Zhang, L. W.; Wang, B. Q. Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment. Mater. Sci. Eng. C2019, 5, 110097.

    Google Scholar 

  6. Kong, M. Y.; Gu, Y. Y.; Liu, Y. L.; Shi, Y. B.; Wu, N.; Feng, W.; Li, F. Y. Luminescence lifetime-based in vivo detection with responsive rare earth-dye nanocomposite. Small2019, 15, 1904487.

    CAS  Google Scholar 

  7. Zong, L.; Wang, Z.; Yu, R. Lanthanide-doped photoluminescence hollow structures: Recent advances and applications. Small2019, 15, 1804510.

    Google Scholar 

  8. Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed.2011, 50, 5808–5829.

    CAS  Google Scholar 

  9. Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature2010, 463, 1061–1065.

    CAS  Google Scholar 

  10. Naduviledathu Raj, A.; Rinkel, T.; Haase, M. Ostwald ripening, particle size focusing, and decomposition of sub-10 nm NaREF4 (RE = La, Ce, Pr, Nd) nanocrystals. Chem. Mater.2014, 26, 5689–5694.

    CAS  Google Scholar 

  11. Mahalingam, V.; Vetrone, F.; Naccache, R.; Speghini, A.; Capobianco, J. A. Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: Multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv. Mater.2009, 21, 4025–1028.

    CAS  Google Scholar 

  12. Cheng, L.; Wang, C.; Liu, Z. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale2013, 5, 23–37.

    CAS  Google Scholar 

  13. Liu, C. H.; Wang, H.; Li, X.; Chen, D. P. Monodisperse, size-tunable and highly efficient β-NaYF4:Yb, Er(Tm) up-conversion luminescent nanospheres: Controllable synthesis and their surface modifications. J. Mater. Chem.2009, 19, 3546–3553.

    CAS  Google Scholar 

  14. Li, Y. Y.; Zhao, L.; Xiao, M.; Huang, Y. M.; Dong, B. H.; Xu, Z. X.; Wan, L.; Li, W. L.; Wang, S. M. Synergic effects of upconversion nanoparticles NaYbF4:Ho3+ and ZrO2 enhanced the efficiency in hole-conductor-free perovskite solar cells. Nanoscale2018, 10, 22003–22011.

    CAS  Google Scholar 

  15. Chien, H. W.; Wu, C. H.; Yang, C. H.; Wang, T. L. Multiple doping effect of LiYF4:Yb3+/Er3+/Ho3+/Tm3+@LiYF4:Yb3+ core/shell nanoparticles and its application in Hg2+ sensing detection. J. Alloy. Compd.2019, 806, 272–282.

    CAS  Google Scholar 

  16. Zhang, Q.; Yan, B. Hydrothermal synthesis and characterization of LiREF4 (RE = Y, Tb-Lu) nanocrystals and their core-shell nanostructures. Inorg. Chem.2010, 49, 6834–6839.

    CAS  Google Scholar 

  17. Li, X. L.; Xue, Z. L.; Liu, H. R. Hydro-thermal synthesis of PEGylated Mn2+ dopant controlled NaYF4:Yb/Er up-conversion nano-particles for multi-color tuning. J. Alloy. Compd.2016, 681, 379–383.

    CAS  Google Scholar 

  18. Lu, S.; Tu, D. T.; Li, X. J.; Li, R. F.; Chen, X. Y. A facile “ship-in-a-bottle” approach to construct nanorattles based on upconverting lanthanide-doped fluorides. Nano Res.2016, 9, 187–197.

    CAS  Google Scholar 

  19. Park, H.; Yoo, G Y.; Kim, M. S.; Kim, K.; Lee, C.; Park, S.; Kim, W. Thin film fabrication of upconversion lanthanide-doped NaYF4 by a sol-gel method and soft lithographical nanopatterning. J. Alloy. Compd.2017, 728, 927–35.

    CAS  Google Scholar 

  20. Li, Z. Q.; Zhang, Y. Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew. Chem., Int. Ed.2006, 45, 7732–7735.

    CAS  Google Scholar 

  21. Sui, Y. Q.; Tao, K.; Tian, Q.; Sun, K. Interaction between Y3+ and oleate ions for the cubic-to-hexagonal phase transformation of NaYF4 nanocrystals. J. Phys. Chem. C2012, 116, 1732–1739.

    CAS  Google Scholar 

  22. Rinkel, T.; Nordmann, J.; Raj, A. N.; Haase, M. Ostwald-ripening and particle size focussing of sub-10 nm NaYF4 upconversion nanocrystals. Nanoscale2014, 6, 14523–14530.

    CAS  Google Scholar 

  23. Rinkel, T.; Raj, A. N.; Dühnen, S.; Haase, M. Synthesis of 10 nm β-NaYF4:Yb, Er/NaYF4 core/shell upconversion nanocrystals with 5 nm Particle Cores. Angew. Chem., Int. Ed.2016, 55, 1164–1167.

    CAS  Google Scholar 

  24. Hong, A. R.; Kim, S. Y.; Cho, S. H.; Lee, K.; Jang, H. S. Facile synthesis of multicolor tunable ultrasmall LiYF4:Yb, Tm, Er/LiGdF4 core/shell upconversion nanophosphors with sub-10 nm size. Dyes Pigm.2017, 139, 831–838.

    CAS  Google Scholar 

  25. Xu, Z.; Gu, W. B.; Feng, H.; Zhang, Z. J.; Zhao, J. T. Enhancement of structure stability and luminescence intensity of LiYF4:Ln3+ nanocrystals. J. Rare Earth.2017, 35, 844–849.

    CAS  Google Scholar 

  26. Jin, L. M.; Wu, Y. K.; Wang, Y. J.; Liu, S.; Zhang, Y. Q.; Li, Z. Y.; Chen, X.; Zhang, W. F.; Xiao, S. M.; Song, Q. H. Mass-manufactural lanthanide-based ultraviolet B microlasers. Adv. Mater.2019, 31, 1807079.

    Google Scholar 

  27. Fischer, S.; Swabeck, J. K.; Alivisatos, A. P. Controlled isotropic and anisotropic shell growth in β-NaLnF4 nanocrystals induced by precursor injection rate. J. Am. Chem. Soc.2017, 139, 12325–12332.

    CAS  Google Scholar 

  28. Zhao, C. Z.; Kong, X. G.; Liu, X. M.; Tu, L. P.; Wu, F.; Zhang, Y. L.; Liu, K.; Zeng, Q. H.; Zhang, H. Li+ ion doping: An approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles. Nanoscale2013, 5, 8084–8089.

    CAS  Google Scholar 

  29. Cheng, T.; Marin, R.; Skripka, A.; Vetrone, F. Small and bright lithium-based upconverting nanoparticles. J. Am. Chem. Soc.2018, 140, 12890–12899.

    CAS  Google Scholar 

  30. Zhu, Y. R.; Zhao, S. W.; Zhou, B.; Zhu, H.; Wang, Y. F. Enhancing upconversion luminescence of LiYF4:Yb, Er nanocrystals by Cd2+ doping and core-shell structure. J. Phys. Chem. C2017, 121, 18909–18916.

    CAS  Google Scholar 

  31. Chen, G. Y.; Ohulchanskyy, T. Y.; Kachynski, A.; Ågren, H.; Prasad, P. N. Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm. ACS Nano2011, 5, 4981–4986.

    CAS  Google Scholar 

  32. Hoang, P. H.; Park, H.; Kim, D. P. Ultrafast and continuous synthesis of unaccommodating inorganic nanomaterials in droplet- and ionic liquid-assisted microfluidic system. J. Am. Chem. Soc.2011, 133, 14765–14770.

    CAS  Google Scholar 

  33. Silvestrini, S.; Carofiglio, T.; Maggini, M. Shape-selective growth of silver nanoparticles under continuous flow photochemical conditions. Chem. Commun.2013, 49, 84–86.

    CAS  Google Scholar 

  34. Nightingale, A. M.; Bannock, J. H.; Krishnadasan, S. H.; O’Mahony, F. T. F.; Haque, S. A.; Sloan, J.; Drury, C.; McIntyre, R.; deMello, J. C. Large-scale synthesis of nanocrystals in a multichannel droplet reactor. J. Mater. Chem. A2013, 1, 4067–4076.

    CAS  Google Scholar 

  35. Chakrabarty, A.; Marre, S.; Landis, R. F.; Rotello, V. M.; Maitra, U.; Guerzo, A. D.; Aymonier, C. Continuous synthesis of high quality CdSe quantum dots in supercritical fluids. J Mater. Chem. C2015, 3, 7561–7566.

    CAS  Google Scholar 

  36. Abdel-Latif, K.; Epps, R. W.; Kerr, C. B.; Papa, C. M.; Castellano, F. N.; Abolhasani, M. Facile room-temperature anion exchange reactions of inorganic perovskite quantum dots enabled by a modular microfluidic platform. Adv. Funct. Mater.2019, 29, 1900712.

    Google Scholar 

  37. Frenz, L.; El Harrak, A.; Pauly, M.; Bégin-Colin, S.; Griffiths, A. D.; Baret, J. C. Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles. Angew. Chem., Int. Ed.2008, 47, 6817–6820.

    CAS  Google Scholar 

  38. Li, D. Y.; Guan, Z. C.; Zhang, W. H.; Zhou, X.; Zhang, W. Y.; Zhuang, Z. X.; Wang, X. R.; Yang, C. J. Synthesis of uniform-size hollow silica microspheres through interfacial polymerization in monodisperse water-in-oil droplets. ACS Appl. Mater Interfaces2010, 2, 2711–2714.

    CAS  Google Scholar 

  39. Sui, J. S.; Yan, J. Y.; Liu, D.; Wang, K.; Luo, G. S. Continuous synthesis of nanocrystals via flow chemistry technology. Small2020, 16, 1902828.

    CAS  Google Scholar 

  40. Shen, J. W.; Wang, Z. Q.; Liu, J. W.; Li, H. Nano-sized NaF inspired intrinsic solvothermal growth mechanism of rare-earth nanocrystals for facile control synthesis of high-quality and small-sized hexagonal NaYbF4:Er. J. Mater. Chem. C2017, 5, 9579–9587.

    CAS  Google Scholar 

  41. Liu, D.; Jing, Y.; Wang, K.; Wang, Y. D.; Luo, G. S. Reaction study of α-phase NaYF4:Yb, Er generation via a tubular microreactor: Discovery of an efficient synthesis strategy. Nanoscale2019, 11, 8363–8371.

    CAS  Google Scholar 

  42. Wang, K.; Zhang, H. M.; Shen, Y.; Adamo, A.; Jensen, K. F. Thermoformed fluoropolymer tubing for in-line mixing. React. Chem. Eng.2018, 3, 707–713.

    CAS  Google Scholar 

  43. Zou, Q. L.; Huang, P.; Zheng, W.; You, W. W.; Li, R. F.; Tu, D. T.; Xu, J.; Chen, X. Y. Cooperative and non-cooperative sensitization upconversion in lanthanide-doped LiYbF4 nanoparticles. Nanoscale2017, 9, 6521–6528.

    CAS  Google Scholar 

  44. Ostrowski, A. D.; Chan, E. M.; Gargas, D. J.; Katz, E. M.; Han, G.; Schuck, P. J.; Milliron, D. J.; Cohen, B. E. Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals. ACS Nano2012, 6, 2686–2692.

    CAS  Google Scholar 

  45. Deng, X. S.; Yu, M. D.; Zhou, X.; Xia, Z. T.; Chen, X. H.; Huang, S. M. Highly bright and sensitive thermometric LiYF4:Yb, Er upconversion nanocrystals through Mg2+ tridoping. J. Mater. Sci.2020, 31, 3415–3425.

    CAS  Google Scholar 

  46. Najmr, S.; Jishkariani, D.; Elbert, K. C.; Donnio, B.; Murray, C. B. A semi-combinatorial approach for investigating polycatenar ligand-controlled synthesis of rare-earth fluoride nanocrystals. Nanoscale2017, 9, 8107–8112.

    CAS  Google Scholar 

  47. Ma, C. S.; Xu, X. X.; Wang, F.; Zhou, Z. G.; Wen, S. H.; Liu, D. M.; Fang, J. H.; Lang, C. I.; Jin, D. Y. Probing the interior crystal quality in the development of more efficient and smaller upconversion nanoparticles. J. Phys. Chem. Lett.2016, 7, 3252–3258.

    CAS  Google Scholar 

  48. Shi, R. K.; Ling, X. C.; Li, X. N.; Zhang, L.; Lu, M.; Xie, X. J.; Huang, L.; Huang, W. Tuning hexagonal NaYbF4 nanocrystals down to sub-10 nm for enhanced photon upconversion. Nanoscale2017, 9, 13739–13746.

    CAS  Google Scholar 

  49. Zhou, Z. Y.; Liang, F.; Qin, W.; Fei, W. Y. Coupled reaction and solvent extraction process to form Li2CO3: Mechanism and product characterization. AIChE J.2014, 60, 282–288.

    CAS  Google Scholar 

  50. Li, L.; Sui, J. S.; Huang, R.; Xiang, W.; Qin, W. Dependence of electrochemical properties of spinel LiMn2O4 on Li2CO3 with micro-flaky, micro-flower and nanorod morphologies. RSC Adv.2017, 7, 42289–42295.

    CAS  Google Scholar 

  51. Corning. Advanced-Flow™ Reactors (AFR) Continuous Lab Flow Chemistry and Industrial Reactor Products and Technology. [Online]. https://www.corning.com/worldwide/en/innovation/corning-emerginginnovations/advanced-flow-reactors.html (accessed 1 May 2020).

  52. Konda, V.; Rydfjord, J.; Sävmarker, J.; Larhed, M. Safe palladium-catalyzed cross-couplings with microwave heating using continuous-flow silicon carbide reactors. Org. Process Res. Dev.2014, 18, 1413–1418.

    CAS  Google Scholar 

  53. Shandong JINDE new material Co., Ltd. SiC microreactor [Online]. http://www.ssic-icreactor.com/intro/7.html (accessed 1 May 2020).

  54. Baek, J.; Allen, P. M.; Bawendi, M. G.; Jensen, K. F. Investigation of indium phosphide nanocrystal synthesis using a high-temperature and high-pressure continuous flow microreactor. Angew. Chem., Int. Ed.2011, 50, 627–630.

    CAS  Google Scholar 

  55. Xie, L. S.; Harris, D. K.; Bawendi, M. G.; Jensen, K. F. Effect of trace water on the growth of indium phosphide quantum dots. Chem. Mater.2015, 27, 5058–5063.

    CAS  Google Scholar 

  56. Lu, Y. Q.; Zhao, J. B.; Zhang, R.; Liu, Y. J.; Liu, D. M.; Goldys, E. M.; Yang, X. S.; Xi, P.; Sunna, A.; Lu, J. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photon.2014, 8, 32–36.

    CAS  Google Scholar 

  57. Ma, Q. Q.; Wang, J.; Li, Z. H.; Wang, D.; Hu, X. X.; Xu, Y. S.; Yuan, Q. Near-infrared-light-mediated high-throughput information encryption based on the inkjet printing of upconversion nanoparticles. Inorg. Chem. Front.2017, 4, 1166–1172.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (No. U1607118), and also appreciated the technical support from Shandong JINDE new material Co., Ltd. in preparing the SiC reactor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang.

Electronic supplementary material

Supplementary material, approximately 2.47 MB.

Supplementary material, approximately 3.92 MB.

Efficient synthesis of lithium rare-earth tetrafluoride nanocrystals via a continuous flow method

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, J., Yan, J., Wang, K. et al. Efficient synthesis of lithium rare-earth tetrafluoride nanocrystals via a continuous flow method. Nano Res. 13, 2837–2846 (2020). https://doi.org/10.1007/s12274-020-2938-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2938-y

Keywords

Navigation