Skip to main content
Log in

Plasmonic coupling-enhanced in situ photothermal nanoreactor with shape selective catalysis for C-C coupling reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon-carbon (C-C) coupling reactions represent one of the most powerful tools for the synthesis of complex natural products, bioactive molecules developed as drugs and agrochemicals. In this work, a multifunctional nanoreactor for C-C coupling reaction was successfully fabricated via encapsulating the core-shell Cu@Ni nanocubes into ZIF-8 (Cu@Ni@ZIF-8). In this nanoreactor, Ni shell of the core-shell Cu@Ni nanocubes was the catalytical active center, and Cu core was in situ heating source for the catalyst by absorbing the visible light. Moreover, benefiting from the plasmonic resonance effect between Cu@Ni nanocubes encapsulated in ZIF-8, the absorption range of nanoreactor was widened and the utilization rate of visible light was enhanced. Most importantly, the microporous structure of ZIF-8 provided shape-selective of reactant. This composite was used for the highly shape-selective and stable photocatalysed C-C coupling reaction of boric acid under visible light irradiation. After five cycles, the nanoreactor still remained high catalytical activity. This Cu@Ni@ZIF-8 nanoreactor opens a way for photocatalytic C-C coupling reactions with shape-selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M. The aerobic oxidation of a Pd(II) dimethyl complex leads to selective ethane elimination from a Pd(III) intermediate. J. Am. Chem. Soc.2012, 134, 2414–2422.

    CAS  Google Scholar 

  2. Shahabi Nejad, M.; Seyedi, N.; Sheibani, H.; Behzadi, S. Synthesis and characterization of Ni(II) complex functionalized silica-based magnetic Nanocatalyst and its application in C-N and C-C cross-coupling reactions. Mol. Divers.2019, 23, 527–539.

    CAS  Google Scholar 

  3. Zhang, S.; Li, J.; Gao, W.; Qu, Y. Q. Insights into the effects of surface properties of oxides on the catalytic activity of Pd for C-C coupling reactions. Nanoscale2015, 7, 3016–3021.

    CAS  Google Scholar 

  4. Kumar, R.; van der Eycken, E. V. Recent approaches for C-C bond formation via direct dehydrative coupling strategies. Chem. Soc. Rev.2013, 42, 1121–1146.

    CAS  Google Scholar 

  5. Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: Versatility and practicality. Angew. Chem., Int. Ed.2009, 48, 5094–5115.

    CAS  Google Scholar 

  6. Choi, M.; Lee, D. H.; Na, K.; Yu, B. W.; Ryoo, R. High catalytic activity of palladium(II)-exchanged mesoporous sodalite and NaA zeolite for bulky aryl coupling reactions: Reusability under aerobic conditions. Angew. Chem., Int. Ed.2009, 48, 3673–3676.

    CAS  Google Scholar 

  7. Guerra, J.; Herrero, M. A. Hybrid materials based on Pd nanoparticles on carbon nanostructures for environmentally benign C-C coupling chemistry. Nanoscale2010, 2, 1390–1400.

    CAS  Google Scholar 

  8. Youn, S. W.; Kim, B. S.; Jagdale, A. R. Pd-catalyzed sequential C-C bond formation and cleavage: Evidence for an unexpected generation of arylpalladium(II) species. J. Am. Chem. Soc.2012, 134, 11308–11311.

    CAS  Google Scholar 

  9. Wang, D. H.; Mei, T. S.; Yu, J. Q. Versatile Pd(II)-catalyzed C-H activation/aryl-aryl coupling of benzoic and phenyl acetic acids. J. Am. Chem. Soc.2008, 130, 17676–17677.

    CAS  Google Scholar 

  10. Ishizuka, K.; Seike, H.; Hatakeyama, T.; Nakamura, M. Nickel-catalyzed alkenylative cross-coupling reaction of alkyl sulfides. J. Am. Chem. Soc. 2010, 132, 13117–13119.

    CAS  Google Scholar 

  11. Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M. Stable mononuclear organometallic Pd(III) complexes and their C-C bond formation reactivity. J. Am. Chem. Soc.2010, 132, 7303–7305.

    CAS  Google Scholar 

  12. Velian, A.; Lin, S. B.; Miller, A. J. M.; Day, M. W.; Agapie, T. Synthesis and C-C coupling reactivity of a dinuclear Ni’-Ni1 complex supported by a terphenyl diphosphine. J. Am. Chem. Soc.2010, 132, 6296–6297.

    CAS  Google Scholar 

  13. Kim, K.; Jung, Y.; Lee, S.; Kim, M.; Shin, D.; Byun, H.; Cho, S. J.; Song, H.; Kim, H. Directed C-H activation and tandem cross-coupling reactions using palladium nanocatalysts with controlled oxidation. Angew. Chem., Int. Ed.2017, 56, 6952–6956.

    CAS  Google Scholar 

  14. Lan, G. X.; Quan, Y.; Wang, M. L.; Nash, G. T.; You, E.; Song, Y.; Veroneau, S. S.; Jiang, X. M.; Lin, W. B. Metal-organic layers as multifunctional two-dimensional nanomaterials for enhanced photoredox catalysis. J. Am. Chem. Soc.2019, 141, 15767–15772.

    CAS  Google Scholar 

  15. Chakraborty, I. N.; Roy, S.; Devatha, G.; Rao, A.; Pillai, P. P. InP/ZnS quantum dots as efficient visible-light photocatalysts for redox and carbon-carbon coupling reactions. Chem. Mater.2019, 31, 2258–2262.

    CAS  Google Scholar 

  16. Yu, S. J.; Wilson, A. J.; Heo, J.; Jain, P. K. Plasmonic control of multi-electron transfer and C-C coupling in visible-light-driven CO2 reduction on Au nanoparticles. Nano Lett.2018, 18, 2189–2194.

    CAS  Google Scholar 

  17. Wang, X. N.; Wang, F. L.; Sang, Y. H.; Liu, H. Full-spectrum solar-light-activated photocatalysts for light-chemical energy conversion. Adv. EnergyMater.2017, 7, 1700473.

    Google Scholar 

  18. Neaţu, S.; Maciá-Agulló, J. A.; Concepción, P.; Garcia, H. Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J. Am. Chem. Soc.2014, 136, 15969–15976.

    Google Scholar 

  19. Kisch, H. Semiconductor photocatalysis—mechanistic and synthetic aspects. Angew. Chem., Int. Ed.2013, 52, 812–847.

    CAS  Google Scholar 

  20. Chen, H. R.; Shen, K.; Chen, J. Y.; Chen, X. D.; Li, Y. W. Hollow-ZIF-templated formation of a ZnO@C-N-Co core-shell nanostructure for highly efficient pollutant photodegradation. J. Mater. Chem. A2017, 5, 9937–9945.

    CAS  Google Scholar 

  21. Sheng, H. B.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Urchin-inspired TiO2@MIL-101 double-shell hollow particles: Adsorption and highly efficient photocatalytic degradation of hydrogen sulfide. Chem. Mater.2017, 29, 5612–5616.

    CAS  Google Scholar 

  22. Pang, X. B.; Chang, W.; Chen, C. C.; Ji, H. W.; Ma, W. H.; Zhao, J. C. Determining the TiO2-photocatalytic aryl-ring-opening mechanism in aqueous solution using oxygen-18 labeled O2 and H2O. J. Am. Chem. Soc.2014, 136, 8714–8721.

    CAS  Google Scholar 

  23. Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem., Int. Ed.2016, 128, 3749–3753.

    Google Scholar 

  24. Li, Z. X.; Yu, C. C.; Wen, Y. Y.; Gao, Y.; Xing, X. F.; Wei, Z. T.; Sun, H.; Zhang, Y. W.; Song, W. Y. Mesoporous hollow Cu-Ni alloy nanocage from core-shell Cu@Ni Nanocube for efficient hydrogen evolution reaction. ACS Catal.2019, 9, 5084–5095.

    CAS  Google Scholar 

  25. Kale, M. J.; Avanesian, T.; Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal.2014, 4, 116–128.

    CAS  Google Scholar 

  26. Chen, J. X.; Feng, J.; Yang, F.; Aleisa, R.; Zhang, Q.; Yin, Y. D. Space-confined seeded growth of Cu nanorods with strong surface plasmon resonance for photothermal actuation. Angew. Chem., Int. Ed.2019, 58, 9275–9281.

    CAS  Google Scholar 

  27. Kazuma, E.; Yamaguchi, T.; Sakai, N.; Tatsuma, T. Growth behaviour and plasmon resonance properties of photocatalytically deposited Cu nanoparticles. Nanoscale2011, 3, 3641–3645.

    CAS  Google Scholar 

  28. Wang, F. F.; Huang, Y. J.; Chai, Z. G.; Zeng, M.; Li, Q.; Wang, Y.; Xu, D. S. Photothermal-enhanced catalysis in core-shell plasmonic hierarchical Cu7S4 microsphere@zeolitic imidazole framework-8. Chem. Sci.2016, 7, 6887–6893.

    CAS  Google Scholar 

  29. Wang, M. M.; Tang, Y. F.; Jin, Y. D. Modulating catalytic performance of metal-organic framework composites by localized surface plasmon resonance. ACS Catal.2019, 9, 11502–11514.

    CAS  Google Scholar 

  30. Yin, Z.; Wang, Y.; Song, C. Q.; Zheng, L. H.; Ma, N.; Liu, X.; Li, S. W.; Lin, L. L.; Li, M. Z.; Xu, Y. et al. Hybrid Au-Ag nanostructures for enhanced plasmon-driven catalytic selective hydrogenation through visible light irradiation and surface-enhanced Raman scattering. J. Am. Chem. Soc.2018, 140, 864–867.

    CAS  Google Scholar 

  31. Zhang, H. B.; Wang, T.; Wang, J. J.; Liu, H. M.; Dao, T. D.; Li, M.; Liu, G. G.; Meng, X. G.; Chang, K.; Shi, L. et al. Surface-plasmonenhanced photodriven CO2 reduction catalyzed by metal-organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv. Mater.2016, 28, 3703–3710.

    CAS  Google Scholar 

  32. Atay, T.; Song, J. H.; Nurmikko, A. V. Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime. Nano Lett.2004, 4, 1627–1631.

    CAS  Google Scholar 

  33. DuChene, J. S.; Tagliabue, G.; Welch, A. J.; Li, X. Q.; Cheng, W. H.; Atwater, H. A. Optical excitation of a nanoparticle Cu/p-NiO photocathode improves reaction selectivity for CO2 reduction in aqueous electrolytes. Nano Lett.2020, 20, 2348–2358.

    CAS  Google Scholar 

  34. Schünemann, S.; Dodekatos, G.; Tüysüz, H. Mesoporous silica supported Au and AuCu nanoparticles for surface plasmon driven glycerol oxidation. Chem. Mater.2015, 27, 7743–7750.

    Google Scholar 

  35. Chen, S.; Tang, F.; Tang, L. Z.; Li, L. D. Synthesis of Cu-nanoparticle hydrogel with self-healing and photothermal properties. ACS Appl. Mater. Interfaces2017, 9, 20895–20903.

    CAS  Google Scholar 

  36. Dong, L. L.; Ji, G. M.; Liu, Y.; Xu, X.; Lei, P. P.; Du, K. M.; Song, S. Y.; Feng, J.; Zhang, H. J. Multifunctional Cu-Ag2S nanoparticles with high photothermal conversion efficiency for photoacoustic imaging-guided photothermal therapy in vivo. Nanoscale2018, 10, 825–831.

    CAS  Google Scholar 

  37. Zhou, M.; Zhang, R.; Huang, M.; Lu, W.; Song, S. L.; Melancon, M. P.; Tian, M.; Liang, D.; Li, C. A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J. Am. Chem. Soc.2010, 132, 15351–15358.

    CAS  Google Scholar 

  38. Tian, Q. W.; Hu, J. Q.; Zhu, Y. H.; Zou, R. J.; Chen, Z. G.; Yang, S. P.; Li, R. W.; Su, Q. Q.; Han, Y.; Liu, X. G. Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy. J. Am. Chem. Soc.2013, 135, 8571–8577.

    CAS  Google Scholar 

  39. Zhang, Y. J.; Sha, R.; Zhang, L.; Zhang, W. B.; Jin, P. P.; Xu, W. G.; Ding, J. X.; Lin, J.; Qian, J.; Yao, G. Y. et al. Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant Cancer. Nat. Commun.2018, 9, 4236.

    Google Scholar 

  40. Chen, L. Y.; Peng, Y.; Wang, H.; Gu, Z. Z.; Duan, C. Y. Synthesis of Au@ZIF-8 single- or multi-core-shell structures for photocatalysis. Chem. Commun.2014, 50, 8651–8654.

    CAS  Google Scholar 

  41. Kuo, C. H.; Tang, Y.; Chou, L. Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z. P.; Tsung, C. K. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J. Am. Chem. Soc.2012, 134, 14345–14348.

    CAS  Google Scholar 

  42. Wang, C. L.; Tuninetti, J.; Wang, Z.; Zhang, C.; Ciganda, R.; Salmon, L.; Moya, S.; Ruiz, J.; Astruc, D. Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst: High efficiency, mechanism, and controlled hydrogen release. J. Am. Chem. Soc.2017, 139, 11610–11615.

    CAS  Google Scholar 

  43. Fu, F. Y.; Wang, C. L.; Wang, Q.; Martinez-Villacorta, A. M.; Escobar, A.; Chong, H. B.; Wang, X.; Moya, S.; Salmon, L.; Fouquet, E. et al. Highly selective and sharp volcano-type synergistic Ni2Pt@ZIF-8-catalyzed hydrogen evolution from ammonia borane hydrolysis. J. Am. Chem. Soc.2018, 140, 10034–10042.

    CAS  Google Scholar 

  44. Li, D. D.; Yu, S. H.; Jiang, H. L. From UV to near-infrared light-responsive metal-organic framework composites: Plasmon and upconversion enhanced photocatalysis. Adv. Mater.2018, 30, 1707377.

    Google Scholar 

  45. Liu, C.; Cao, C. Y.; Liu, J.; Wang, X. S.; Zhu, Y. N.; Song, W. G. One methyl group makes a major difference: Shape-selective catalysis by zeolite nanoreactors in liquid-phase condensation reactions. J. Mater. Chem. A2017, 5, 17464–17469.

    CAS  Google Scholar 

  46. Li, Y. D.; Ruan, Z. H.; He, Y. Z.; Li, J. Z.; Li, K. Q.; Jiang, Y. Q.; Xu, X. Z.; Yuan, Y.; Lin, K. F. In situ fabrication of hierarchically porous G-C3N4 and understanding on its enhanced photocatalytic activity based on energy absorption. Appl. Catal. B Environ.2018, 236, 64–75.

    CAS  Google Scholar 

  47. Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics2016, 10, 393–398.

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Beijing Natural Science Foundation (No. 2182061) and Science Foundation of China University of Petroleum, Beijing (No. 2462019BJRC001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenxing Li or Chuanxin Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Gong, Y., Zhang, X. et al. Plasmonic coupling-enhanced in situ photothermal nanoreactor with shape selective catalysis for C-C coupling reaction. Nano Res. 13, 2812–2818 (2020). https://doi.org/10.1007/s12274-020-2933-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2933-3

Keywords

Navigation