Skip to main content
Log in

Amplified fluorescence of Mg2+ selective red-light emitting carbon dot in water and direct evaluation of creatine kinase activity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon quantum dot/carbon dot (CD) exhibiting sustained photoluminescence at longer wavelengths in aqueous solution is difficult to prepare, but has enormous potential in biomedical applications. For the first time, we report the magnesium(II) selective fluorescence enhancement of a red-light emitting anthrarufin and boric acid-derived CD in aqueous solution for direct evaluation of creatine kinase (CK) enzyme activity. The CD displayed visually detectable, intense red fluorescence only in the presence of magnesium ion (Mg2+) at physiological pH value when irradiated with an ultraviolet (UV) source. Concurrently, a significant increase in steady-state fluorescence intensity and fluorescence lifetime was documented. A time-dependent density functional theory (TD-DFT) analysis displayed a bathochromic shift in UV-visible (vis) absorption, and increased oscillator strength of transition resulting from the selective chelation of Mg2+ with β-hydroxy keto functionality on the surface of the CD. The CD-Mg2+ assembly was subsequently used to conceptualize the detection of CK directly through the exploration of the differential binding affinity of Mg2+ with adenosine triphosphate (ATP), adenosine diphophate (ADP), and CD that is otherwise not possible with commercially available kits as of today. Thus, the report delineated here usher grandeur potential of CD for biological explorations related to Mg2+ or ATP sensing and monitoring of Mg2+-dependent enzymatic activity through a clear understanding of the chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hassan, M.; Gomes, V. G.; Dehghani, A.; Ardekani, S. M. Engineering carbon quantum dots for photomediated theranostics. Nano Res.2018, 11, 1–41.

    Article  Google Scholar 

  2. Yuan, F. L.; Li, S. H.; Fan, Z. T.; Meng, X. Y.; Fan, L. Z.; Yang, S. H. Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today2016, 11, 565–586.

    Article  CAS  Google Scholar 

  3. Zheng, X. T.; Ananthanarayanan, A.; Luo, K. Q.; Chen, P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small2015, 11, 1620–1636.

    Article  CAS  Google Scholar 

  4. Zhang, J.; Yu, S. H. Carbon dots: Large-scale synthesis, sensing and bioimaging. Mater. Today2016, 19, 382–393.

    Article  CAS  Google Scholar 

  5. Zu, F. L..; Yan, F. Y.; Bai, Z. J.; Xu, J. X.; Wang, Y. Y.; Huang, Y. C.; Zhou, X. G. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim. Acta2017, 184, 1899–1914.

    Article  CAS  Google Scholar 

  6. Semeniuk, M.; Yi, Z. H.; Poursorkhabi, V.; Tjong, J.; Jaffer, S.; Lu, Z. H.; Sain, M. Future perspectives and review on organic carbon dots in electronic applications. ACS Nano2019, 13, 6224–6255.

    Article  CAS  Google Scholar 

  7. Gao, D.; Liu, X. L.; Jiang, D. L.; Zhao, H.; Zhu, Y. D.; Chen, X. Q.; Luo, H. R.; Fan, H. S.; Zhang, X. D. Exploring of multicolor emissive carbon dots with novel double emission mechanism. Sens. Actuators, B: Chem.2018, 277, 373–380.

    Article  CAS  Google Scholar 

  8. Wang, H.; Sun, C.; Chen, X. R.; Zhang, Y.; Colvin, V. L.; Rice, Q.; Seo, J.; Feng, S. Y.; Wang, S. N.; Yu, W. W. Excitation wavelength independent visible color emission of carbon dots. Nanoscale2017, 9, 1909–1915.

    Article  CAS  Google Scholar 

  9. Zhu, S. J.; Song, Y. B.; Wang, J.; Wan, H.; Zhang, Y.; Ning, Y.; Yang, B. Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today2017, 13, 10–14.

    Article  CAS  Google Scholar 

  10. WZhang, T. X.; Zhu, J. Y.; Zhai, Y.; Wang, H.; Bai, X.; Dong, B.; Wang, H. Y.; Song, H. W. A novel mechanism for red emission carbon dots: Hydrogen bond dominated molecular states emission. Nanoscale2017, 9, 13042–13051.

    Article  Google Scholar 

  11. Yan, F. Y.; Sun, Z. H.; Zhang, H.; Sun, X. D.; Jiang, Y. X.; Bai, Z. J. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: A review. Microchim. Acta2019, 186, 583.

    Article  Google Scholar 

  12. Cheng, J.; Wang, C. F.; Zhang, Y.; Yang, S. Y.; Chen, S. Zinc ion-doped carbon dots with strong yellow photoluminescence. RSC Adv.2016, 6, 37189–37194.

    Article  CAS  Google Scholar 

  13. Fan, Y.; Guo, X. Y.; Zhang, Y. Q.; Lv, Y.; Zhao, J. L.; Liu, X. Y. Efficient and stable red emissive carbon nanoparticles with a hollow sphere structure for white light-emitting diodes. ACS Appl. Mater. Interfaces2016, 8, 31863–31870.

    Article  CAS  Google Scholar 

  14. Zhang, H. Y.; Wang, Y.; Xiao, S.; Wang, H.; Wang, J. H.; Feng, L. Rapid detection of Cr(VI) ions based on cobalt(II)-doped carbon dots. Biosens. Bioelectron.2017, 87, 46–52.

    Article  CAS  Google Scholar 

  15. Liu, Y. B.; Chao, D. Y.; Zhou, L.; Li, Y. N.; Deng, R. P.; Zhang, H. J. Yellow emissive carbon dots with quantum yield up to 68.6% from manganese ions. Carbon2018, 135, 253–259.

    Article  CAS  Google Scholar 

  16. Chen, B. B.; Liu, M. L.; Li, C. M.; Huang, C. Z. Fluorescent carbon dots functionalization. Adv. Colloid Interface Sci.2019, 270, 165–190.

    Article  CAS  Google Scholar 

  17. Yang, S. H.; Sun, X. H.; Wang, Z. Y.; Wang, X. Y.; Guo, G. S.; Pu, Q. S. Anomalous enhancement of fluorescence of carbon dots through lanthanum doping and potential application in intracellular imaging of ferric ion. Nano Res.2018, 11, 1369–1378.

    Article  CAS  Google Scholar 

  18. Zuo, G. C.; Hu, J. S.; Wang, Y. T.; Xie, A. M.; Dong, W. Dramatic red fluorescence enhancement and emission red shift of carbon dots following Zn/ZnO decoration. Luminescence2019, 34, 759–766.

    Article  CAS  Google Scholar 

  19. Mandal, S.; Prasad, S. R.; Mandal, D.; Das, P. Bovine serum albumin amplified reactive oxygen species generation from anthrarufin-derived carbon dot and concomitant nanoassembly for combination antibiotic-photodynamic therapy application. ACS Appl. Mater. Interfaces2019, 11, 33273–33284.

    Article  CAS  Google Scholar 

  20. Mandal, S.; Das, P. Ultrasensitive visual detection of mycotoxincitrinin with yellow-light emitting carbon dot and Congo red. Food Chem.2020, 312, 126076.

    Article  CAS  Google Scholar 

  21. Du, F. Y.; Yuan, J.; Zhang, M. M.; Li, J. N.; Zhou, Z.; Li, Z.; Cao, M. L.; Chen, J. H.; Zhang, L. R.; Liu, X. et al. Nitrogen-doped carbon dots with heterogeneous multi-layered structures. RSC Adv.2014, 4, 37536–37541.

    Article  CAS  Google Scholar 

  22. Sahoo, M.; Sreena, K. P.; Vinayan, B. P.; Ramaprabhu, S. Green synthesis of boron doped graphene and its application as highperformance anode material in Li ion battery. Mater. Res. Bull.2015, 61, 383–390.

    Article  CAS  Google Scholar 

  23. Liu, Y. H.; Duan, W. X.; Song, W.; Liu, J. J.; Ren, C. L.; Wu, J.; Liu, D.; Chen, H. L. Red emission B, N, S-co-doped carbon dots for colorimetric and fluorescent dual mode detection of Fe3+ ions in complex biological fluids and living cells. ACS Appl. Mater. Interfaces2017, 9, 12663–12672.

    Article  CAS  Google Scholar 

  24. Lu, S. Y.; Sui, L. Z.; Liu, J. J.; Zhu, S. J.; Chen, A. M.; Jin, M. X.; Yang, B. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater.2017, 29, 1603443.

    Article  Google Scholar 

  25. Jana, J.; Ganguly, M.; Chandrakumar, K. R. S.; Rao, G. M.; Pal, T. Boron precursor-dependent evolution of differently emitting carbon dots. Langmuir2017, 33, 573–584.

    Article  CAS  Google Scholar 

  26. Kim, Y. H.; Yoon, M.; Cho, D. W.; Jeoung, S. C.; Kim, D. Transient resonance Raman spectra of 1,5-dihydroxyanthraquinone in the lowest excited triplet state. Bull. Korean Chem. Soc.1997, 18, 803–805.

    CAS  Google Scholar 

  27. Farruggia, G.; Iotti, S.; Prodi, L.; Montalti, M.; Zaccheroni, N.; Savage, P. B.; Trapani, V.; Sale, P.; Wolf, F. I. 8-Hydroxyquinoline derivatives as fluorescent sensors for magnesium in living cells. J. Am. Chem. Soc.2006, 128, 344–350.

    Article  CAS  Google Scholar 

  28. Komatsu, H.; Iwasawa, N.; Citterio, D.; Suzuki, Y.; Kubota, T.; Tokuno, K.; Kitamura, Y.; Oka, K.; Suzuki, K. Design and synthesis of highly sensitive and selective fluorescein-derived magnesium fluorescent probes and application to intracellular 3D Mg2+ imaging. J. Am. Chem. Soc.2004, 126, 16353–16360.

    Article  CAS  Google Scholar 

  29. Abrinaei, F. Laser ablation of magnesium in water and investigation of optical nonlinearity by the Z-scan technique. J. Opt. Soc. Am. B2016, 33, 864–870.

    Article  CAS  Google Scholar 

  30. Sheng, P. X.; Ting, Y. P.; Chen, J. P.; Hong, L. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: Characterization of biosorptive capacity and investigation of mechanisms. J. Colloid Interface Sci.2004, 275, 131–141.

    Article  CAS  Google Scholar 

  31. Zhao, M. L.; Yang, F.; Xue, Y.; Xiao, D.; Guo, Y. A time-dependent DFT study of the absorption and fluorescence properties of graphene quantum dots. Chem. Phys. Chem.2014, 15, 950–957.

    Article  CAS  Google Scholar 

  32. Trapani, V.; Farruggia, G.; Marraccini, C.; Iotti, S.; Cittadini, A.; Wolf, F. I. Intracellular magnesium detection: Imaging a brighter future. Analyst2010, 135, 1855–1866.

    Article  CAS  Google Scholar 

  33. Jahnen-Dechent, W.; Ketteler, M. Magnesium basics. Clin. Kidney J.2012, 5, i3–i14.

    Article  CAS  Google Scholar 

  34. Baird, M. F.; Graham, S. M.; Baker, J. S.; Bickerstaff, G. F. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J. Nutr. Metab.2012, 2012, 960363.

    Article  Google Scholar 

  35. Szasz, G.; Gruber, W.; Bernt, E. Creatine kinase in serum: 1. Determination of optimum reaction conditions. Clin. Chem.1976, 22, 650–656.

    Article  CAS  Google Scholar 

  36. Pulido, N. O.; Salcedo, G.; Pérez-Hernández, G.; José-Núñez, C.; Velázquez-Campoy, A.; García-Hernández, E. Energetic effects of magnesium in the recognition of adenosine nucleotides by the F1-ATPase β subunit. Biochemistry2010, 49, 5258–5268.

    Article  CAS  Google Scholar 

  37. O’Sullivan, W. J.; Smithers, G. W. Stability constants for biologically important metal-ligand complexes. Methods Enzymol.1979, 63, 294–336.

    Article  Google Scholar 

  38. Zhang, M. R.; Su, R. G.; Zhong, J.; Fei, L.; Cai, W.; Guan, Q. W.; Li, W. J.; Li, N.; Chen, Y. S.; Cai, L. L. et al. Red/orange dual-emissive carbon dots for pH sensing and cell imaging. Nano Res.2019, 12, 815–821.

    Article  CAS  Google Scholar 

  39. Chandra, S.; Patra, P.; Pathan, S. H.; Roy, S.; Mitra, S.; Layek, A.; Bhar, R.; Pramanik, P.; Goswami, A. Luminescent S-doped carbon dots: An emergent architecture for multimodal applications. J. Mater. Chem. B2013, 1, 2375–2382.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P. D. and R. S. thank the Indian Institute of Technology (IIT) Patna for infrastructural and financial assistance. S. M. and J. P. thank IIT Patna for Institute Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prolay Das.

Electronic Supplementary Material

12274_2020_2927_MOESM1_ESM.pdf

Amplified fluorescence of Mg2+ selective red-light emitting carbon dot in water and direct evaluation of creatine kinase activity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Pal, J., Subramanian, R. et al. Amplified fluorescence of Mg2+ selective red-light emitting carbon dot in water and direct evaluation of creatine kinase activity. Nano Res. 13, 2770–2776 (2020). https://doi.org/10.1007/s12274-020-2927-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2927-1

Keywords

Navigation