Skip to main content
Log in

Hybrids of gold nanoparticles and oligo(p-phenyleneethynylene)s end-functionalized with alkynylruthenium groups: Outstanding two-photon absorption in the second biological window

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Oligo(p-phenyleneethynylene)s (OPEs) end-capped with (alkynyl)bis(diphosphine)ruthenium and thiol/thiolate groups stabilize ca. 2 nm diameter gold nanoparticles (AuNPs). The morphology, elemental composition and stability of the resultant organometallic OPE/AuNP hybrid materials have been defined using a combination of molecular- and nano-material chacterization techniques. The hybrids display long-term stability in solution (more than a month), good solubility in organic solvents, reversible ruthenium-centered oxidation, and transparency beyond 800 nm, and possess very strong nonlinear absorption activity at the first biological window, and unprecedented two-photon absorption activity in the second biological window (σ2 up to 38,000 GM at 1,050 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tutt, L. W.; Boggess, T. F. A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials. Progr. Quant. Electron.1993, 17, 299–338.

    Article  CAS  Google Scholar 

  2. Kim, H. M.; Cho, B. R. Small-molecule two-photon probes for bioimaging applications. Chem. Rev.2015, 115, 5014–5055.

    Article  CAS  Google Scholar 

  3. Chen, G. Y.; Roy, I.; Yang, C. H.; Prasad, P. N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev.2016, 116, 2826–2885.

    Article  CAS  Google Scholar 

  4. Dini, D.; Calvete, M. J. F.; Hanack, M. Nonlinear optical materials for the smart filtering of optical radiation. Chem. Rev.2016, 116, 13043–13233.

    Article  CAS  Google Scholar 

  5. Smith, A. M.; Mancini, M. C.; Nie, S. M. Second window for in vivo imaging. Nat. Nanotechnol.2009, 4, 710–711.

    Article  CAS  Google Scholar 

  6. He, G. S.; Tan, L. S.; Zheng, Q. D.; Prasad, P. N. Multiphoton absorbing materials: Molecular designs, characterizations, and applications. Chem. Rev.2008, 108, 1245–1330.

    Article  CAS  Google Scholar 

  7. Samoc, M.; Dalton, G. T.; Gladysz, J. A.; Zheng, Q. L.; Velkov, Y.; Ågren, H.; Norman, P.; Humphrey, M. G. Cubic nonlinear optical properties of platinum-terminated polyynediyl chains. Inorg. Chem.2008, 47, 9946–9957.

    Article  CAS  Google Scholar 

  8. Roberts, R. L.; Schwich, T.; Corkery, T. C.; Cifuentes, M. P.; Green, K. A.; Farmer, J. D.; Low, P. J.; Marder, T. B.; Samoc, M.; Humphrey, M. G. Organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers. Adv. Mater.2009, 21, 2318–2322.

    Article  CAS  Google Scholar 

  9. Zhou, G. J.; Wong, W. Y. Organometallic acetylides of PtII, AuI and HgII as new generation optical power limiting materials. Chem. Soc. Rev.2011, 40, 2541–2566.

    Article  CAS  Google Scholar 

  10. Kamat, P. V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B2002, 106, 7729–7744.

    Article  CAS  Google Scholar 

  11. Quintana, C.; Morshedi, M.; Wang, H.; Du, J.; Cifuentes, M. P.; Humphrey, M. G. Exceptional two-photon absorption in alkynylruthenium-gold nanoparticle hybrids. Nano Lett.2019, 19, 756–760.

    Article  Google Scholar 

  12. Ramakrishna, G.; Varnavski, O.; Kim, J.; Lee, D.; Goodson, T. Quantum-sized gold clusters as efficient two-photon absorbers. J. Am. Chem. Soc.2008, 130, 5032–5033.

    Article  CAS  Google Scholar 

  13. Olesiak-Banska, J.; Waszkielewicz, M.; Matczyszyn, K.; Samoc, M. A closer look at two-photon absorption, absorption saturation and nonlinear refraction in gold nanoclusters. RSC Adv.2016, 6, 98748–98752.

    Article  CAS  Google Scholar 

  14. Olesiak-Banska, J.; Waszkielewicz, M.; Obstarczyk, P.; Samoc, M. Two-photon absorption and photoluminescence of colloidal gold nanoparticles and nanoclusters. Chem. Soc. Rev.2019, 48, 4087–4117.

    Article  CAS  Google Scholar 

  15. Simpson, P. V.; Watson, L. A.; Barlow, A.; Wang, G. M.; Cifuentes, M. P.; Humphrey, M. G. Record multiphoton absorption cross-sections by dendrimer organometalation. Angew. Chem., Int. Ed.2016, 55, 2387–2391.

    Article  CAS  Google Scholar 

  16. Schwich, T.; Barlow, A.; Cifuentes, M. P.; Szeremeta, J.; Samoc, M.; Humphrey, M. G. Stellar multi-photon absorption materials: Beyond the telecommunication wavelength band. Chem. Eur. J.2017, 23, 8395–8399.

    Article  CAS  Google Scholar 

  17. Stapleton, J. J.; Harder, P.; Daniel, T. A.; Reinard, M. D.; Yao, Y. X.; Price, D. W.; Tour, J. M.; Allara, D. L. Self-assembled oligo(phenyleneethynylene) molecular electronic switch monolayers on gold: Structures and chemical stability. Langmuir2003, 19, 8245–8255.

    Article  CAS  Google Scholar 

  18. Al-Owaedi, O. A.; Milan, D. C.; Oerthel, M. C.; Bock, S.; Yufit, D. S.; Howard, J. A. K.; Higgins, S. J.; Nichols, R. J.; Lambert, C. J.; Bryce, M. R. et al. Experimental and computational studies of the single-molecule conductance of Ru(II) and Pt(II) trans-bis(acetylide) complexes. Organometallics2016, 35, 2944–2954.

    Article  CAS  Google Scholar 

  19. Ng, Z.; Loh, K. P.; Li, L. Q.; Ho, P.; Bai, P.; Yip, J. H. K. Synthesis and electrical characterization of oligo(phenylene ethynylene) molecular wires coordinated to transition metal complexes. ACS Nano2009, 3, 2103–2114.

    Article  CAS  Google Scholar 

  20. Quintana, C.; Cifuentes, M. P.; Humphrey, M. G. Transition metal complex/gold nanoparticle hybrid materials. Chem. Soc. Rev.2020, 49, 2316–2341.

    Article  CAS  Google Scholar 

  21. Hurst, S. K.; Cifuentes, M. P.; Morrall, J. P. L.; Lucas, N. T.; Whittall, I. R.; Humphrey, M. G.; Asselberghs, I.; Persoons, A.; Samoc, M.; Luther-Davies, B. et al. Organometallic complexes for nonlinear optics. 22. Quadratic and cubic hyperpolarizabilities of trans-bis(bidentate phosphine)ruthenium σ-arylvinylidene and σ-arylalkynyl complexes. Organometallics2001, 20, 4664–4675.

    Article  CAS  Google Scholar 

  22. Touchard, D.; Morice, C.; Cadierno, V.; Haquette, P.; Toupet, L.; Dixneuf, P. H. Novel allenylidene alkynyl and ammonia alkynyl metal complexes via selective synthesis of mono and bis alkynyl ruthenium(II) complexes; crystal structure of trans-[Ru(NH3)((C-CPh)) (Ph2PCH2CH2PPh2)2]PF6. J. Chem. Soc., Chem. Commun.1994, 859–860.

  23. Touchard, D.; Haquette, P.; Guesmi, S.; Le Pichon, L.; Daridor, A.; Toupet, L.; Dixneuf, P. H. Vinylidene-, alkynyl-, and trans-bis(alkynyl)ruthenium complexes. Crystal structure of trans-[Ru(NH3)(C⋮C-Ph)(Ph2PCH2CH2PPh2)2]PF6. Organometallics1997, 16, 3640–3648.

    Article  CAS  Google Scholar 

  24. McDonagh, A. M.; Whittall, I. R.; Humphrey, M. G.; Hockless, D. C. R.; Skelton, B. W.; White, A. H. Organometallic complexes for nonlinear optics VI: Syntheses of rigid-rod ruthenium σ-acetylide complexes bearing strong acceptor ligands; X-ray crystal structures of trans-[Ru(C ≡ CC6H4NO2-4)2(dppm)2] and trans-tRuC≡CC6H4C6H4NO2-4,4′)2(dppm)2]. J. Organomet. Chem.1996, 523, 33–40.

    Article  CAS  Google Scholar 

  25. Babgi, B. A.; Kodikara, M. S.; Morshedi, M.; Wang, H.; Quintana, C.; Schwich, T.; Moxey, G. J.; Van Steerteghem, N.; Clays, K.; Stranger, R. et al. Linear optical, quadratic and cubic nonlinear optical, electrochemical, and theoretical studies of “rigid-rod” bis-alkynyl ruthenium complexes. ChemPlusChem2018, 83, 630–642.

    Article  CAS  Google Scholar 

  26. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc., Chem. Commun.1994, 801–802.

  27. Zhai, L.; McCullough, R. D. Regioregular polythiophene/gold nanoparticle hybrid materials. J. Mater. Chem.2004, 14, 141–143.

    Article  CAS  Google Scholar 

  28. Bürgi, T. Properties of the gold-sulphur interface: From self-assembled monolayers to clusters. Nanoscale2015, 7, 15553–15567.

    Article  Google Scholar 

  29. Pensa, E.; Cortés, E.; Corthey, G.; Carro, P.; Vericat, C.; Fonticelli, M. H.; Benítez, G.; Rubert, A. A.; Salvarezza, R. C. The chemistry of the sulfur-gold interface: In search of a unified model. Acc. Chem. Res.2012, 45, 1183–1192.

    Article  CAS  Google Scholar 

  30. Castner, D.; Hinds, K.; Grainger, D. W. X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces. Langmuir1996, 12, 5083–5086.

    Article  CAS  Google Scholar 

  31. Qie, L.; Chen, W. M.; Xiong, X. Q.; Hu, C. C.; Zou, F.; Hu, P.; Huang, Y. H. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci.2015, 2, 1500195.

    Article  Google Scholar 

  32. Mulas, A.; Hervault, Y. M.; He, X. Y.; Di Piazza, E.; Norel, L.; Rigaut, S.; Lagrost, C. Fast electron transfer exchange at self-assembled monolayers of organometallic ruthenium(II) σ-arylacetylide complexes. Langmuir2015, 31, 7138–7147.

    Article  CAS  Google Scholar 

  33. OriginLab Corporation. Origin User Guide; OriginLab Corporation: Northampton, MA, USA, 2001.

    Google Scholar 

  34. Green, K. A.; Cifuentes, M. P.; Corkery, T. C.; Samoc, M.; Humphrey, M. G. Switching the cubic nonlinear optical properties of an electro-, halo-, and photochromic ruthenium alkynyl complex across six states. Angew. Chem., Int. Ed.2009, 48, 7867–7870.

    Article  CAS  Google Scholar 

  35. Babgi, B.; Rigamonti, L.; Cifuentes, M. P.; Corkery, T. C.; Randles, M. D.; Schwich, T.; Petrie, S.; Stranger, R.; Teshome, A.; Asselberghs, I. et al. Length-dependent convergence and saturation behavior of electrochemical, linear optical, quadratic nonlinear optical, and cubic nonlinear optical properties of dipolar alkynylruthenium complexes with oligo(phenyleneethynylene) bridges. J. Am. Chem. Soc.2009, 131, 10293–10307.

    Article  CAS  Google Scholar 

  36. Goldmann, C.; Lazzari R.; Paquez, X.; Boissière, C.; Ribot, F.; Sanchez, C.; Chanéac C.; Portehault, D. Charge transfer at hybrid interfaces: Plasmonics of aromatic thiol-capped gold nanoparticles. ACS Nano2015, 9, 7572–7582.

    Article  CAS  Google Scholar 

  37. Pérez-Moreno, J.; Kuzyk, M. G. Comment on “Organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers” — Increasing the nonlinear optical response by two orders of magnitude. Adv. Mater.2011, 23, 1428–1432.

    Google Scholar 

  38. Schwich, T.; Cifuentes, M. P.; Gugger, P. A.; Samoc, M.; Humphrey, M. G. Electronic, molecular weight, molecular volume, and financial cost-scaling and comparison of two-photon absorption efficiency in disparate molecules (Organometallic complexes for nonlinear optics. 48.) — A response to “Comment on ‘Organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers.’ Increasing the nonlinear response by two orders of magnitude.” Adv. Mater.2011, 23, 1433–1435.

    Article  CAS  Google Scholar 

  39. Liu, X.; Atwater, M.; Wang, J. H.; Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B: Biointerfaces2007, 58, 3–7.

    Article  CAS  Google Scholar 

  40. Moreau, J.; Lux, F.; Four, M.; Olesiak-Banska, J.; Matczyszyn, K.; Perriat, P.; Frochot, C.; Arnoux, P.; Tillement, O.; Samoc, M. et al. A 5-(difluorenyl)-1,10-phenanthroline-based Ru(II) complex as a coating agent for potential multifunctional gold nanoparticles. Phys. Chem. Chem. Phys.2014, 16, 14826–14833.

    Article  CAS  Google Scholar 

  41. Zhang, T. S.; Zhao, T. T.; Yuan, P. Y.; Xu, Q. H. Plasmon-enhanced two-photon excitation fluorescence and biomedical applications. In Surface Plasmon Enhanced, Coupled and Controlled Fluorescence. Geddes, C. D., Ed.; Wiley, Hoboken: New Jersey, 2017; pp 211–225.

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the Australian Research Council (DP170100411: M. G. H. and M. S.) and the National Science Centre (NCN) Poland (UMO-2016/22/M/ST4/00275: J. K. Z. and M. S.) for support of this work. C. Q. thanks Becas Chile (Agencia Nacional de Investigación y Desarrollo) for financial support in the form of a PhD scholarship (2015-72160061), J. P. L. M. thanks the Australian Government for an Australian Postgraduate Award, J. D. thanks the China Scholarship Council and the Australian National University for a CSC-ANU scholarship, and J. K. Z. thanks the Foundation for Polish Science (FNP) for support. The authors acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility and the Centre of Advanced Microscopy at the Australian National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark G. Humphrey.

Electronic Supplementary Material

12274_2020_2924_MOESM1_ESM.pdf

Hybrids of gold nanoparticles and oligo(p-phenyleneethynylene)s end-functionalized with alkynylruthenium groups: Outstanding two-photon absorption in the second biological window

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintana, C., Morshedi, M., Du, J. et al. Hybrids of gold nanoparticles and oligo(p-phenyleneethynylene)s end-functionalized with alkynylruthenium groups: Outstanding two-photon absorption in the second biological window. Nano Res. 13, 2755–2762 (2020). https://doi.org/10.1007/s12274-020-2924-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2924-4

Keywords

Navigation