Skip to main content
Log in

A non-nucleophilic gel polymer magnesium electrolyte compatible with sulfur cathode

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Magnesium/sulfur battery (Mg/S) has recently received wide attention due to its high theoretical energy density (3,260 Wh/L) and low cost. To further improve its safety and flexibility, developing a polymer electrolyte that can be compatible with both electrophilic S and Mg is critical. Here, we report a magnesium chloride-(fluorinated tetraethylene glycolic)borate (MgCl-FTGB) based non-nucleophilic, gel-type polymer electrolyte for Mg/S battery via a facile synthetic method through commercially available reagents. This electrolyte coupled with glass fiber allows reversible Mg deposition/dissolution (100% coulombic efficiency) with low polarization (500 µA/cm2, 300/300 mV), and shows a wide electrochemical window of 4.8 V (vs. Mg/Mg2+). Mg/S battery assembled with this electrolyte can cycle over 50 times with a high specific discharge capacity retention of over 1,100 mAh/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muldoon, J.; Bucur, C. B.; Gregory, T. Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev.2014, 114, 11683–11720.

    CAS  Google Scholar 

  2. Kim, H. S.; Arthur, T. S.; Allred, G. D.; Zajicek, J.; Newman, J. G.; Rodnyansky, A. E.; Oliver, A. G.; Boggess, W. C.; Muldoon, J. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun.2011, 2, 427.

    Google Scholar 

  3. Zhao-Karger, Z.; Zhao, X. Y.; Fuhr, O.; Fichtner, M. Bisamide based non-nucleophilic electrolytes for rechargeable magnesium batteries. RSC Adv.2013, 3, 16330–16335.

    CAS  Google Scholar 

  4. Zhao-Karger, Z.; Zhao, X. Y.; Wang, D.; Diemant, T.; Behm, R. J.; Fichtner, M. Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv. Energy Mater.2015, 5, 1401155.

    Google Scholar 

  5. Gao, T.; Noked, M.; Pearse, A. J.; Gillette, E.; Fan, X. L.; Zhu, Y.; Luo, C.; Suo, L. M.; Schroeder, M. A.; Xu, K. et al. Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation. J. Am. Chem. Soc.2015, 137, 12388–12393.

    CAS  Google Scholar 

  6. Liao, C.; Sa, N. Y.; Key, B.; Burrell, A. K.; Cheng, L.; Curtiss, L. A.; Vaughey, J. T.; Woo, J. J.; Hu, L. B.; Pan, B. F. et al. The unexpected discovery of the Mg(HMDS)2/MgCl2 complex as a magnesium electrolyte for rechargeable magnesium batteries. J. Mater. Chem. A2015, 3, 6082–6087.

    CAS  Google Scholar 

  7. Xu, Y.; Li, W. F.; Zhou, G. M.; Pan, Z. H.; Zhang, Y. G. A non-nucleophilic mono-Mg2+ electrolyte for rechargeable mg/s battery. Energy Storage Mater.2018, 14, 253–257.

    Google Scholar 

  8. Doe, R. E.; Han, R. B.; Hwang, J.; Gmitter, A. J.; Shterenberg, I.; Yoo, H. D.; Pour, N.; Aurbach, D. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun.2014, 50, 243–245.

    CAS  Google Scholar 

  9. He, S. J.; Luo, J.; Liu, T. L. MgCl2/AlCl3 electrolytes for reversible Mg deposition/stripping: Electrochemical conditioning or not? J. Mater. Chem. A2017, 5, 12718–12722.

    CAS  Google Scholar 

  10. Luo, J.; He, S. J.; Liu, T. L. Tertiary Mg/MgCl2/AlCl3 inorganic Mg2+ electrolytes with unprecedented electrochemical performance for reversible mg deposition. ACS Energy Lett.2017, 2, 1197–1202.

    CAS  Google Scholar 

  11. Li, W. F.; Cheng, S.; Wang, J.; Qiu, Y. C.; Zheng, Z. Z.; Lin, H. Z.; Nanda, S.; Ma, Q.; Xu, Y.; Ye, F. M. et al. Synthesis, crystal structure, and electrochemical properties of a simple magnesium electrolyte for magnesium/sulfur batteries. Angew. Chem.2016, 128, 6516–6520.

    Google Scholar 

  12. Fan, H. Y.; Zheng, Z. Z.; Zhao, L. J.; Li, W. F.; Wang, J.; Dai, M. M.; Zhao, Y. X.; Xiao, J. H.; Wang, G.; Ding, X. Y. et al. Extending cycle life of Mg/S battery by activation of mg anode/electrolyte interface through an LiCl-assisted MgCl2 solubilization mechanism. Adv. Funct. Mater.2020, 30, 1909370.

    CAS  Google Scholar 

  13. Xu, Y.; Zhou, G. M.; Zhao, S. Y.; Li, W. F.; Shi, F. F.; Li, J.; Feng, J.; Zhao, Y. X.; Wu, Y.; Guo, J. H. et al. Improving a Mg/S battery with YCl3 additive and magnesium polysulfide. Adv. Sci.2020, 7, 1903603.

    Google Scholar 

  14. Zhang, Z. H.; Cui, Z. L.; Qiao, L. X.; Guan, J.; Xu, H. M.; Wang, X. G.; Hu, P.; Du, H. P.; Li, S. Z.; Zhou, X. H. et al. Novel design concepts of efficient Mg-ion electrolytes toward high-performance magnesium-selenium and magnesium-sulfur batteries. Adv. Energy Mater.2017, 7, 1602055.

    Google Scholar 

  15. Xu, H. M.; Zhang, Z. H.; Cui, Z. L.; Du, A. B.; Lu, C. L.; Dong, S. M.; Ma, J.; Zhou, X. H.; Cui, G. L. Strong anion receptor-assisted boron-based mg electrolyte with wide electrochemical window and non-nucleophilic characteristic. Electrochem. Commun.2017, 83, 72–76.

    CAS  Google Scholar 

  16. Xu, H. M.; Zhang, Z. H.; Li, J. J.; Qiao, L. X.; Lu, C. L.; Tang, K.; Dong, S. M.; Ma, J.; Liu, Y. J.; Zhou, X. H. et al. Multifunctional additives improve the electrolyte properties of magnesium borohydride toward magnesium-sulfur batteries. ACS Appl. Mater. Interfaces2018, 10, 23757–23765.

    CAS  Google Scholar 

  17. Du, A. B.; Zhang, Z. H.; Qu, H. T.; Cui, Z. L.; Qiao, L. X.; Wang, L. L.; Chai, J. C.; Lu, T.; Dong, S. M.; Dong, T. T. et al. An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium-sulfur battery. Energy Environ. Sci.2017, 10, 2616–2625.

    CAS  Google Scholar 

  18. Zhao-Karger, Z.; Liu, R. Y.; Dai, W. X.; Li, Z. Y.; Diemant, T.; Vinayan, B. P.; Bonatto Minella, C.; Yu, X. W.; Manthiram, A.; Behm, R. J. et al. Toward highly reversible magnesium-sulfur batteries with efficient and practical Mg[B(hfip)4]2 electrolyte. ACS Energy Lett.2018, 3, 2005–2013.

    CAS  Google Scholar 

  19. Zhao-Karger, Z.; Gil Bardaji, M. E.; Fuhr, O.; Fichtner, M. A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. J. Mater. Chem. A2017, 5, 10815–10820.

    CAS  Google Scholar 

  20. Ha, S. Y.; Lee, Y. W.; Woo, S. W.; Koo, B.; Kim, J. S.; Cho, J.; Lee, K. T.; Choi, N. S. Magnesium(II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl. Mater. Interfaces2014, 6, 4063–4073.

    CAS  Google Scholar 

  21. Sa, N. Y.; Pan, B. F.; Saha-Shah, A.; Hubaud, A. A.; Vaughey, J. T.; Baker, L. A.; Liao, C.; Burrell, A. K. Role of chloride for a simple, non-grignard mg electrolyte in ether-based solvents. ACS Appl. Mater. Interfaces2016, 8, 16002–16008.

    CAS  Google Scholar 

  22. Gao, T.; Hou, S.; Wang, F.; Ma, Z. H.; Li, X. G.; Xu, K.; Wang, C. S. Reversible S0/MgSx redox chemistry in a MgTFSI2/MgCl2/DME electrolyte for rechargeable Mg/S batteries. Angew. Chem., Int. Ed.2017, 56, 13526–13530.

    CAS  Google Scholar 

  23. Li, X. G.; Gao, T.; Han, F. D.; Ma, Z. H.; Fan, X. L.; Hou, S.; Eidson, N.; Li, W. S.; Wang, C. S. Reducing mg anode overpotential via ion conductive surface layer formation by iodine additive. Adv. Energy Mater.2018, 8, 1701728.

    Google Scholar 

  24. Yang, Y. Y.; Qiu, Y. X.; NuLi, Y. N.; Wang, W. Q.; Yang, J.; Wang, J. L. A novel magnesium electrolyte containing a magnesium bis(diisopropyl)amide-magnesium chloride complex for rechargeable magnesium batteries. J. Mater. Chem. A2019, 7, 18295–18303.

    CAS  Google Scholar 

  25. Yang, Y. Y.; Wang, W. Q.; Nuli, Y. N.; Yang, J.; Wang, J. L. High active magnesium trifluoromethanesulfonate-based electrolytes for magnesium-sulfur batteries. ACS Appl. Mater. Interfaces2019, 11, 9062–9072.

    CAS  Google Scholar 

  26. Zhao, X. H.; Yang, Y. Y.; NuLi, Y. N.; Li, D. Y.; Wang, Y. R.; Xiang, X. L. A new class of electrolytes based on magnesium bis(diisopropyl)amide for magnesium-sulfur batteries. Chem. Commun.2019, 55, 6086–6089.

    CAS  Google Scholar 

  27. Kumar, G. G.; Munichandraiah, N. A gel polymer electrolyte of magnesium triflate. Solid State Ion.2000, 128, 203–210.

    CAS  Google Scholar 

  28. Kumar, G. G.; Munichandraiah, N. Solid-state rechargeable magnesium cell with poly(vinylidenefluoride)-magnesium triflate gel polymer electrolyte. J. Power Sources2001, 102, 46–54.

    CAS  Google Scholar 

  29. Chusid, O.; Gofer, Y.; Gizbar, H.; Vestfrid, Y.; Levi, E.; Aurbach, D.; Riech, I. Solid-state rechargeable magnesium batteries. Adv. Mater.2003, 15, 627–630.

    CAS  Google Scholar 

  30. Pandey, G. P.; Agrawal, R. C.; Hashmi, S. A. Performance studies on composite gel polymer electrolytes for rechargeable magnesium battery application. J. Phys. Chem. Solids2011, 72, 1408–1413.

    CAS  Google Scholar 

  31. Shao, Y. Y.; Rajput, N. N.; Hu, J. Z.; Hu, M.; Liu, T. B.; Wei, Z. H.; Gu, M.; Deng, X. C.; Xu, S. C.; Han, K. S. et al. Nanocomposite polymer electrolyte for rechargeable magnesium batteries. Nano Energy2015, 12, 750–759.

    CAS  Google Scholar 

  32. Thelen, J. L.; Inceoglu, S.; Venkatesan, N. R.; Mackay, N. G.; Balsara, N. P. Relationship between ion dissociation, melt morphology, and electrochemical performance of lithium and magnesium single-ion conducting block copolymers. Macromolecules2016, 49, 9139–9147.

    CAS  Google Scholar 

  33. Du, A. B.; Zhang, H. R.; Zhang, Z. H.; Zhao, J. W.; Cui, Z. L.; Zhao, Y. M.; Dong, S. M.; Wang, L. L.; Zhou, X. H.; Cui, G. L. A crosslinked polytetrahydrofuran-borate-based polymer electrolyte enabling wide-working-temperature-range rechargeable magnesium batteries. Adv. Mater.2019, 31, 1805930.

    Google Scholar 

  34. Merrill, L. C.; Ford, H. O.; Schaefer, J. L. Application of single-ion conducting gel polymer electrolytes in magnesium batteries. ACS Appl. Energy Mater.2019, 2, 6355–6363.

    CAS  Google Scholar 

  35. Ford, H. O.; Merrill, L. C.; He, P.; Upadhyay, S. P.; Schaefer, J. L. Cross-linked ionomer gel separators for polysulfide shuttle mitigation in magnesium-sulfur batteries: Elucidation of structure-property relationships. Macromolecules2018, 51, 8629–8636.

    CAS  Google Scholar 

  36. Luo, J.; Bi, Y. J.; Zhang, L. P.; Zhang, X. Y.; Liu, T. L. A stable, non-corrosive perfluorinated pinacolatoborate Mg electrolyte for rechargeable Mg batteries. Angew. Chem., Int. Ed.2019, 58, 6967–6971.

    CAS  Google Scholar 

  37. Li, Z. Y.; Fuhr, O.; Fichtner, M.; Zhao-Karger, Z. Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries. Energy Environ. Sci.2019, 12, 3496–3501.

    CAS  Google Scholar 

  38. Tsujioka, S.; Nolan, B. G.; Takase, H.; Fauber, B. P.; Strauss, S. H. Conductivities and electrochemical stabilities of lithium salts of polyfluoroalkoxyaluminate superweak anions. J. Electrochem. Soc.2004, 151, A1418–A1423.

    CAS  Google Scholar 

  39. Lopez, J.; Pei, A.; Oh, J. Y.; Wang, G. J. N.; Cui, Y.; Bao, Z. N. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc.2018, 140, 11735–11744.

    CAS  Google Scholar 

  40. Yu, Z. A.; Mackanic, D. G.; Michaels, W.; Lee, M.; Pei, A.; Feng, D. W.; Zhang, Q. H.; Tsao, Y.; Amanchukwu, C. V.; Yan, X. Z. et al. A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal anodes. Joule2019, 3, 2761–2776.

    CAS  Google Scholar 

  41. Zhou, Y. Q.; Yoshida, K.; Yamaguchi, T.; Liu, H. Y.; Fang, C. H.; Fang, Y. Microhydration of BH4: Dihydrogen bonds, structure, stability, and Raman spectra. J. Phys. Chem. A2017, 121, 9146–9155.

    CAS  Google Scholar 

  42. Pour, N.; Gofer, Y.; Major, D. T.; Aurbach, D. Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. J. Am. Chem. Soc.2011, 133, 6270–6278.

    CAS  Google Scholar 

  43. Kang, S. J.; Lim, S. C.; Kim, H.; Heo, J. W.; Hwang, S.; Jang, M.; Yang, D.; Hong, S. T.; Lee, H. Non-grignard and lewis acid-free sulfone electrolytes for rechargeable magnesium batteries. Chem. Mater.2017, 29, 3174–3180.

    CAS  Google Scholar 

  44. Rojas, A. A.; Thakker, K.; McEntush, K. D.; Inceoglu, S.; Stone, G. M.; Balsara, N. P. Dependence of morphology, shear modulus, and conductivity on the composition of lithiated and magnesiated single-ion-conducting block copolymer electrolytes. Macromolecules2017, 50, 8765–8776.

    CAS  Google Scholar 

  45. Xu, Y.; Ye, Y. F.; Zhao, S. Y.; Feng, J.; Li, J.; Chen, H.; Yang, A. K.; Shi, F. F.; Jia, L. J.; Wu, Y. et al. In situ X-ray absorption spectroscopic investigation of the capacity degradation mechanism in Mg/S batteries. Nano Lett.2019, 19, 2928–2934.

    CAS  Google Scholar 

  46. Zeng, L. Q.; Wang, N.; Yang, J.; Wang, J. L.; Nuli, Y. N. Application of a sulfur cathode in nucleophilic electrolytes for magnesium/sulfur batteries. J. Electrochem. Soc.2017, 164, A2504–A2512.

    CAS  Google Scholar 

  47. Zhou, X. J.; Tian, J.; Hu, J. L.; Li, C. L. High rate magnesium-sulfur battery with improved cyclability based on metal-organic framework derivative carbon host. Adv. Mater.2018, 30, 1704166.

    Google Scholar 

  48. Wang, J.; Cheng, S.; Li, W. F.; Jia, L. J.; Xiao, Q. B.; Hou, Y.; Zheng, Z. Z.; Li, H. F.; Zhang, S.; Zhou, L. S. et al. Robust electrical “highway” network for high mass loading sulfur cathode. Nano Energy2017, 40, 390–398.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21433013 and NSFCU1832218), the National Key Research and Development Program of China (No. 2016YFB0100100), the International Partnership Program of Chinese Academy of Sciences (Nos. 121E32KYSB20150004), the CAS-Queensland Collaborative Science Fund (No. 121E32KYSB20160032) and the Users with Excellence Project of Heifei Science Center CAS (No. 2018HSC-UE005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuegang Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Zhao, Y., Xiao, J. et al. A non-nucleophilic gel polymer magnesium electrolyte compatible with sulfur cathode. Nano Res. 13, 2749–2754 (2020). https://doi.org/10.1007/s12274-020-2923-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2923-5

Keywords

Navigation