Skip to main content
Log in

iRGD-reinforced, photo-transformable nanoclusters toward cooperative enhancement of intratumoral penetration and antitumor efficacy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Insufficient intratumoral penetration greatly hurdles the anticancer performance of nanomedicine. To realize highly efficient tumor penetration in a precisely and spatiotemporally controlled manner, far-red light-responsive nanoclusters (NCs) capable of size shrinkage and charge conversion were developed and co-administered with iRGD to synergistically improve the intratumoral penetration and the anticancer efficacy. The NCs were constructed using the singlet oxygen-sensitive (SOS) polyethylene glycolpolyurethane-polyethylene glycol (PEG-(1O2)PU-PEG) triblock copolymer to encapsulate the doxorubicin (DOX)-loaded, chlorin e6 (Ce6)-conjugated polyamindoamine (PAMAM) dendrimer (DCD) via the double-emulsion method. Co-administration of iRGD notably increased the permeability of NCs within tumor vasculature and tumor tissues. In addition, upon far-red light irradiation (660 nm) of tumors at low optical density (10 mW/cm2), the generated 1O2 could disintegrate the NCs and release the DCD with positive surface charge and ultra-small size (∼5 nm), which synergized with iRGD to enable deep intratumoral penetration. Consequently, the local 1O2 at lethal concentrations along with the released DOX efficiently and cooperatively eradicated tumor cells. This study provides a convenient approach to spatiotemporally promote the intratumoral penetration of nanomedicine and mediate programmed anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peer, D.; Karp, J. M.; Hong, S.; FaroKhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol.2007, 2, 751–760.

    CAS  Google Scholar 

  2. Chen, H. B.; Gu, Z. J.; An, H. W.; Chen, C. Y.; Chen, J.; Cui, R.; Chen, S. Q.; Chen, W. H.; Chen, X. S.; Chen, X. Y. et al. Precise nanomedicine for intelligent therapy of cancer. Sci. China Chem.2018, 61, 1503–1552.

    CAS  Google Scholar 

  3. Zhang, Y.; Cai, L. L.; Li, D.; Lao, Y. H.; Liu, D. Z.; Li, M. Q.; Ding, J. X.; Chen, X. S. Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas. Nano Res.2018, 11, 4806–4822.

    CAS  Google Scholar 

  4. Piao, J. G.; Gao, F.; Li, Y. N.; Yu, L.; Liu, D.; Tan, Z. B.; Xiong, Y. J.; Yang, L. H.; You, Y. Z. pH-sensitive zwitterionic coating of gold nanocages improves tumor targeting and photothermal treatment efficacy. Nano Res.2018, 11, 3193–3204.

    CAS  Google Scholar 

  5. Li, Y. J.; Dang, J. J.; Liang, Q. J.; Yin, L. C. Thermal-responsive carbon monoxide (CO) delivery expedites metabolic exhaustion of cancer cells toward reversal of chemotherapy resistance. ACS Cent. Sci.2019, 5, 1044–1058.

    CAS  Google Scholar 

  6. Zhou, H.; Fan, Z. Y.; Deng, J. J.; Lemons, P. K.; Arhontoulis, D. C.; Bowne, W. B.; Cheng, H. Hyaluronidase embedded in nanocarrier PEG shell for enhanced tumor penetration and highly efficient antitumor efficacy. Nano Lett.2016, 16, 3268–3277.

    CAS  Google Scholar 

  7. Zhou, H.; Fan, Z. Y.; Li, P. Y.; Deng, J. J.; Arhontoulis, D. C.; Li, C. Y.; Bowne, W. B.; Cheng, H. Dense and dynamic polyethylene glycol shells cloak nanoparticles from uptake by liver endothelial cells for long blood circulation. ACS Nano2018, 12, 10130–10141.

    CAS  Google Scholar 

  8. Sun, H. T.; Yan, L. Y.; Chang, M. Y. Z.; Carter, K. A.; Zhang, R. S.; Slyker, L.; Lovell, J. F.; Wu, Y.; Cheng, C. A multifunctional biodegradable brush polymer-drug conjugate for paclitaxel/gemcitabine co-delivery and tumor imaging. Nanoscale Adv.2019, 1, 2761–2771.

    CAS  Google Scholar 

  9. Xiong, M. H.; Bao, Y.; Xu, X.; Wang, H.; Han, Z. Y.; Wang, Z. Y.; Liu, Y. Q.; Huang, S. Y.; Song, Z. Y.; Chen, J. J. et al. Selective killing of Helicobacter pylori with pH-responsive helix-coil conformation transitionable antimicrobial polypeptides. Proc. Natl. Acad. Sci. USA2017, 114, 12675–12680.

    CAS  Google Scholar 

  10. Li, Y. J.; Dang, J. J.; Liang, Q. J.; Yin, L. C. Carbon monoxide (CO)-strengthened cooperative bioreductive anti-tumor therapy via mitochondrial exhaustion and hypoxia induction. Biomaterials2019, 209, 138–151.

    CAS  Google Scholar 

  11. Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul.2001, 41, 189–207.

    CAS  Google Scholar 

  12. Li, Y. J.; Hu, J.; Liu, X.; Liu, Y.; Lv, S. X.; Dang, J. J.; Ji, Y.; He, J. L.; Yin, L. C. Photodynamic therapy-triggered on-demand drug release from ROS-responsive core-cross-linked micelles toward synergistic anti-cancer treatment. Nano Res.2019, 12, 999–1008.

    CAS  Google Scholar 

  13. Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release2010, 148, 135–146.

    CAS  Google Scholar 

  14. Li, H. C.; Fan, X. L.; Houghton, J. M. Tumor microenvironment: The role of the tumor stroma in cancer. J. Cell. Biochem.2007, 101, 805–815.

    CAS  Google Scholar 

  15. Overchuk, M.; Zheng, G. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials2018, 156, 217–237.

    CAS  Google Scholar 

  16. Tong, R.; Langer, R. Nanomedicines targeting the tumor microenvironment. Cancer J.2015, 21, 314–321.

    CAS  Google Scholar 

  17. Feng, B.; Zhou, F. Y.; Hou, B.; Wang, D. G.; Wang, T. T.; Fu, Y. L.; Ma, Y. T.; Yu, H. J.; Li, Y. P. Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment. Adv. Mater.2018, 30, 1803001.

    Google Scholar 

  18. Li, J. J.; Ke, W. D.; Li, H.; Zha, Z. S.; Han, Y.; Ge, Z. S. Endogenous stimuli-sensitive multistage polymeric micelleplex anticancer drug delivery system for efficient tumor penetration and cellular internalization. Adv. Healthc. Mater.2015, 4, 2206–2219.

    CAS  Google Scholar 

  19. Chen, B. L.; Dai, W. B.; He, B.; Zhang, H.; Wang, X. Q.; Wang, Y. G.; Zhang, Q. Current multistage drug delivery systems based on the tumor microenvironment. Theranostics2017, 7, 538–558.

    CAS  Google Scholar 

  20. Zhang, Y. R.; Lin, R.; Li, H. J.; He, W. L.; Du, J. Z.; Wang, J. Strategies to improve tumor penetration of nanomedicines through nanoparticle design. WIREs Nanomed. Nanobiotechnol.2019, 11, e1519.

    Google Scholar 

  21. Su, Y. L.; Hu, S. H. Functional nanoparticles for tumor penetration of therapeutics. Pharmaceutics2018, 10, 193.

    CAS  Google Scholar 

  22. Wang, S.; Huang, P.; Chen, X. Y. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv. Mater.2016, 28, 7340–7364.

    CAS  Google Scholar 

  23. Niu, Y. M.; Zhu, J. H.; Li, Y.; Shi, H. H.; Gong, Y. X.; Li, R.; Huo, Q.; Ma, T.; Liu, Y. Size shrinkable drug delivery nanosystems and priming the tumor microenvironment for deep intratumoral penetration of nanoparticles. J. Control. Release2018, 277, 35–47.

    CAS  Google Scholar 

  24. Yin, H.; Yang, J.; Zhang, Q.; Wang, H. Y.; Xu, J. J.; Zheng, J. N. iRGD as a tumor-penetrating peptide for cancer therapy (review). Mol. Med. Rep.2017, 15, 2925–2930.

    CAS  Google Scholar 

  25. Ruoslahti, E. Tumor penetrating peptides for improved drug delivery. Adv. Drug Deliv. Rev.2017, 110–111, 3–12.

    Google Scholar 

  26. Wang, Y. Z.; Xie, Y.; Li, J.; Peng, Z. H.; Sheinin, Y.; Zhou, J. P.; Oupicky, D. Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy. ACS Nano2017, 11, 2227–2238.

    CAS  Google Scholar 

  27. Sun, Q. X.; Ojha, T.; Kiessling, F.; Lammers, T.; Shi, Y. Enhancing tumor penetration of nanomedicines. Biomacromolecules2017, 18, 1449–1459.

    CAS  Google Scholar 

  28. Xu, X. D.; Er Saw, P.; Tao, W.; Li, Y. J.; Ji, X. Y.; Bhasin, S.; Liu, Y. L.; Ayyash, D.; Rasmussen, J.; Huo, M. et al. ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv. Mater.2017, 29, 1700141.

    Google Scholar 

  29. Sugahara, K. N.; Teesalu, T.; Karmali, P. P.; Kotamraju, V. R.; Agemy, L.; Girard, O. M.; Hanahan, D.; Mattrey, R. F.; Ruoslahti, E. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell2009, 16, 510–520.

    CAS  Google Scholar 

  30. Su, J. H.; Sun, H. P.; Meng, Q. S.; Yin, Q.; Tang, S.; Zhang, P. C.; Chen, Y.; Zhang, Z. W.; Yu, H. J.; Li, Y. P. Long circulation red-blood-cell-mimetic nanoparticles with peptide-enhanced tumor penetration for simultaneously inhibiting growth and lung metastasis of breast cancer. Adv. Funct. Mater.2016, 26, 1243–1252.

    CAS  Google Scholar 

  31. Teesalu, T.; Sugahara, K. N.; Kotamraju, V. R.; Ruoslahti, E. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl. Acad. Sci. USA2009, 106, 16157–16162.

    CAS  Google Scholar 

  32. Kuang, J.; Song, W.; Yin, J.; Zeng, X.; Han, S.; Zhao, Y. P.; Tao, J.; Liu, C. J.; He, X. H.; Zhang, X. Z. iRGD modified chemoimmunotherapeutic nanoparticles for enhanced immunotherapy against glioblastoma. Adv. Funct. Mater.2018, 28, 1800025.

    Google Scholar 

  33. Cun, X. L.; Chen, J. T.; Ruan, S. B.; Zhang, L.; Wan, J. Y.; He, Q.; Gao, H. L. A novel strategy through combining iRGD peptide with tumor-microenvironment-responsive and multistage nanoparticles for deep tumor penetration. ACS Appl. Mater. Interfaces2015, 7, 27458–27466.

    CAS  Google Scholar 

  34. Puig-Saus, C.; Rojas, L. A.; Laborda, E.; Figueras, A.; Alba, R.; Fillat, C.; Alemany, R. iRGD tumor-penetrating peptide-modified oncolytic adenovirus shows enhanced tumor transduction, intratumoral dissemination and antitumor efficacy. Gene Ther.2014, 21, 767–774.

    CAS  Google Scholar 

  35. Sugahara, K. N.; Teesalu, T.; Prakash Karmali, P.; Ramana Kotamraju, V.; Agemy, L.; Greenwald, D. R.; Ruoslahti, E. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science2010, 328, 1031–1035.

    CAS  Google Scholar 

  36. Su, Y. L.; Yu, T. W.; Chiang, W. H.; Chiu, H. C.; Chang, C. H.; Chiang, C. S.; Hu, S. H. Hierarchically targeted and penetrated delivery of drugs to tumors by size-changeable graphene quantum dot nanoaircrafts for photolytic therapy. Adv. Funct. Mater.2017, 27, 1700056.

    Google Scholar 

  37. Li, C. X.; Zhang, Y. F.; Li, Z. M.; Mei, E. C.; Lin, J.; Li, F.; Chen, C. G.; Qing, X. L.; Hou, L. Y.; Xiong, L. L. et al. Light-responsive biodegradable nanorattles for cancer theranostics. Adv. Mater.2018, 30, 1706150.

    Google Scholar 

  38. Yang, G. B.; Sun, X. Q.; Liu, J. J.; Feng, L. Z.; Liu, Z. Light-responsive, singlet-oxygen-triggered on-demand drug release from photosensitizer-doped mesoporous silica nanorods for cancer combination therapy. Adv. Funct. Mater.2016, 26, 4722–4732.

    CAS  Google Scholar 

  39. Tang, L.; Yang, X. J.; Yin, Q.; Cai, K. M.; Wang, H.; Chaudhury, I.; Yao, C.; Zhou, Q.; Kwon, M.; Hartman, J. A. et al. Investigating the optimal size of anticancer nanomedicine. Proc. Natl. Acad. Sci. USA2014, 111, 15344–15349.

    CAS  Google Scholar 

  40. Tang, L.; Fan, T. M.; Borst, L. B.; Cheng, J. J. Synthesis and biological response of size-specific, monodisperse drug-silica nanoconjugates. ACS Nano2012, 6, 3954–3966.

    CAS  Google Scholar 

  41. Wang, Z. M.; Upputuri, P. K.; Zhen, X.; Zhang, R. C.; Jiang, Y. Y.; Ai, X. Z.; Zhang, Z. J.; Hu, M.; Meng, Z. Y.; Lu, Y. P. et al. pH-sensitive and biodegradable charge-transfer nanocomplex for second near-infrared photoacoustic tumor imaging. Nano Res.2019, 12, 49–55.

    CAS  Google Scholar 

  42. Sun, Q. H.; Zhou, Z. X.; Qiu, N. S.; Shen, Y. Q. Rational design of cancer nanomedicine: Nanoproperty integration and synchronization. Adv. Mater.2017, 29, 1606628.

    Google Scholar 

  43. Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M. R.; Miyazono, K.; Uesaka, M. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol.2011, 6, 815–823.

    CAS  Google Scholar 

  44. Wang, J. Q.; Mao, W. W.; Lock, L. L.; Tang, J. B.; Sui, M. H.; Sun, W. L.; Cui, H. G.; Xu, D.; Shen, Y. Q. The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano2015, 9, 7195–7206.

    CAS  Google Scholar 

  45. Sun, Q. H.; Sun, X. R.; Ma, X. P.; Zhou, Z. X.; Jin, E. L.; Zhang, B.; Shen, Y. Q.; Van Kirk, E. A.; Murdoch, W. J.; Lott, J. R. et al. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv. Mater.2014, 26, 7615–7621.

    CAS  Google Scholar 

  46. Zhou, J.; Li, M. H.; Lim, W. Q.; Luo, Z.; Phua, S. Z. F.; Huo, R. L.; Li, L. Q.; Li, K.; Dai, L. L.; Liu, J. J. et al. A transferrin-conjugated hollow nanoplatform for redox-controlled and targeted chemotherapy of tumor with reduced inflammatory reactions. Theranostics2018, 8, 518–532.

    CAS  Google Scholar 

  47. Shen, S.; Li, H. J.; Chen, K. G.; Wang, Y. C.; Yang, X. Z.; Lian, Z. X.; Du, J. Z.; Wang, J. Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapy. Nano Lett.2017, 17, 3822–3829.

    CAS  Google Scholar 

  48. Dai, L. L.; Li, K.; Li, M. H.; Zhao, X. J.; Luo, Z.; Lu, L.; Luo, Y. F.; Cai, K. Y. Size/Charge changeable acidity-responsive micelleplex for photodynamic-improved PD-L1 immunotherapy with enhanced tumor penetration. Adv. Funct. Mater.2018, 28, 1707249.

    Google Scholar 

  49. Li, H. J.; Du, J. Z.; Du, X. J.; Xu, C. F.; Sun, C. Y.; Wang, H. X.; Cao, Z. T.; Yang, X. Z.; Zhu, Y. H.; Nie, S. M. et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl. Acad. Sci. USA2016, 113, 4164–4169.

    CAS  Google Scholar 

  50. Chen, J. J.; Ding, J. X.; Wang, Y. C.; Cheng, J. J.; Ji, S. X.; Zhuang, X. L.; Chen, X. S. Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors. Adv. Mater.2017, 29, 1701170.

    Google Scholar 

  51. Yang, G. B.; Phua, S. Z. F.; Lim, W. Q.; Zhang, R.; Feng, L. Z.; Liu, G. F.; Wu, H. W.; Bindra, A. K.; Jana, D.; Liu, Z. et al. A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy. Adv. Mater.2019, 31, 1901513.

    Google Scholar 

  52. Hu, C.; Cun, X. L.; Ruan, S. B.; Liu, R.; Xiao, W.; Yang, X. T.; Yang, Y. Y.; Yang, C. Y.; Gao, H. L. Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials2018, 168, 64–75.

    CAS  Google Scholar 

  53. Jin, H.; Zhu, T.; Huang, X. G.; Sun, M.; Li, H. G.; Zhu, X. Y.; Liu, M. L.; Xie, Y. B.; Huang, W.; Yan, D. Y. ROS-responsive nanoparticles based on amphiphilic hyperbranched polyphosphoester for drug delivery: Light-triggered size-reducing and enhanced tumor penetration. Biomaterials2019, 211, 68–80.

    CAS  Google Scholar 

  54. He, H.; Chen, Y. B.; Li, Y. J.; Song, Z. Y.; Zhong, Y. N.; Zhu, R. Y.; Cheng, J. J.; Yin, L. C. Effective and selective anti-cancer protein delivery via all-functions-in-one nanocarriers coupled with visible light-responsive, reversible protein engineering. Adv. Funct. Mater.2018, 28, 1706710.

    Google Scholar 

  55. Dang, J. J.; Ye, H.; Li, Y. J.; Liang, Q. J.; Li, X. D.; Yin, L. C. Multivalency-assisted membrane-penetrating siRNA delivery sensitizes photothermal ablation via inhibition of tumor glycolysis metabolism. Biomaterials2019, 223, 119463.

    CAS  Google Scholar 

  56. Wang, J. H.; He, H.; Xu, X.; Wang, X.; Chen, Y. B.; Yin, L. C. Far-red light-mediated programmable anti-cancer gene delivery in cooperation with photodynamic therapy. Biomaterials2018, 171, 72–82.

    CAS  Google Scholar 

  57. Zhou, Y.; Ye, H.; Chen, Y. B.; Zhu, R. Y.; Yin, L. C. Photoresponsive drug/gene delivery systems. Biomacromolecules2018, 19, 1840–1857.

    CAS  Google Scholar 

  58. Xiong, X.; Xu, Z.; Huang, H. B.; Wang, Y.; Zhao, J. Y.; Guo, X.; Zhou, S. B. A NIR light triggered disintegratable nanoplatform for enhanced penetration and chemotherapy in deep tumor tissues. Biomaterials2020, 245, 119840.

    CAS  Google Scholar 

  59. Li, F. Y.; Du, Y.; Liu, J. N.; Sun, H.; Wang, J.; Li, R. Q.; Kim, D.; Hyeon, T.; Ling, D. Responsive assembly of upconversion nanoparticles for pH-activated and near-infrared-triggered photodynamic therapy of deep tumors. Adv. Mater.2018, 30, 1802808.

    Google Scholar 

  60. Dang, J. J.; He, H.; Chen, D. L.; Yin, L. C. Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT). Biomater. Sci.2017, 5, 1500–1511.

    CAS  Google Scholar 

  61. Zhu, R. Y.; He, H.; Liu, Y.; Cao, D. S.; Yan, J.; Duan, S. Z.; Chen, Y. B.; Yin, L. C. Cancer-selective bioreductive chemotherapy mediated by dual hypoxia-responsive nanomedicine upon photo-dynamic therapy-induced hypoxia aggravation. Biomacromolecules2019, 20, 2649–2656.

    CAS  Google Scholar 

  62. Ye, H.; Zhou, Y.; Liu, X.; Chen, Y. B.; Duan, S. Z.; Zhu, R. Y.; Liu, Y.; Yin, L. C. Recent advances on reactive oxygen species-responsive delivery and diagnosis system. Biomacromolecules2019, 20, 2441–2463.

    CAS  Google Scholar 

  63. Nagelkerke, A.; Bussink, J.; Sweep, F. C. G. J.; Span, P. N. Generation of multicellular tumor spheroids of breast cancer cells: How to go three-dimensional. Anal. Biochem.2013, 437, 17–19.

    CAS  Google Scholar 

  64. Baugh, S. D. P.; Yang, Z. W.; Leung, D. K.; Wilson, D. M.; Breslow, R. Cyclodextrin dimers as cleavable carriers of photodynamic sensitizers. J. Am. Chem. Soc.2001, 123, 12488–12494.

    CAS  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the National Natural Science Foundation of China (Nos. 51873142, 51722305, and 81903068), the Ministry of Science and Technology of China (No. 2016YFA0201200), 111 project, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liu or Lichen Yin.

Electronic Supplementary Material

12274_2020_2913_MOESM1_ESM.pdf

iRGD-reinforced, photo-transformable nanoclusters toward cooperative enhancement of intratumoral penetration and antitumor efficacy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Zhu, R., Wu, F. et al. iRGD-reinforced, photo-transformable nanoclusters toward cooperative enhancement of intratumoral penetration and antitumor efficacy. Nano Res. 13, 2706–2715 (2020). https://doi.org/10.1007/s12274-020-2913-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2913-7

Keywords

Navigation