Skip to main content
Log in

Unexpected Kirkendall effect in twinned icosahedral nanocrystals driven by strain gradient

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanoscale Kirkendall effect has been widely used for rationally fabricating high-quality hollow nanocrystals, but often requires the intrinsic diffusion coefficient of out-diffusion materials higher than that of in-diffusion components. Here we demonstrate an unexpected Kirkendall effect that occurs in diffusing intrinsically faster Cu atoms into Pd icosahedra, leading to the formation of PdCu alloyed hollow nanocrystals. The control experiment with Pd octahedra replacing icosahedra indicates the critical role of twin boundaries in facilitating such unexpected Kirkendall effect. In addition, geometric phase analysis and density functional theory calculation show that out-diffusion of Pd atoms in the icosahedra is faster than in-diffusion of Cu atoms, particularly through the twin boundaries, upon the strain gradient with an inward distribution from tensile to compressive strains. The unexpected Kirkendall effect is also found in the interdiffusion of Ag and Pd atoms in Pd icosahedra. Our finds break the limitation of the intrinsic diffusion coefficient for the synthesis of hollow nanocrystals through Kirkendall effect and are expected to enormously enrich the family of hollow nanocrystals which have shown great potential in broad areas, such as fine chemical production, energy storage and conversion, and environmental protection. This work also provides a deep understanding in the diffusion behavior of atoms upon the strain gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smigelskas, A. D.; Kirkendall, E. O. Zinc diffusion in alpha brass. Trans. AIME1947, 171, 130–142.

    Google Scholar 

  2. Kirkendall, E. O. Diffusion of zinc in alpha brass. Trans. AIME1942, 147, 104–110.

    Google Scholar 

  3. Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science2004, 304, 711–714.

    CAS  Google Scholar 

  4. Fan, H. J.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.; Zacharias, M.; Gösele, U. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat. Mater.2006, 5, 627–631.

    CAS  Google Scholar 

  5. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science2014, 343, 1339–1343.

    CAS  Google Scholar 

  6. González, E.; Arbiol, J.; Puntes, V. F. Carving at the nanoscale: Sequential galvanic exchange and kirkendall growth at room temperature. Science2011, 334, 1377–1380.

    Google Scholar 

  7. Fan, H. J.; Gösele, U.; Zacharias, M. Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: A review. Small2007, 3, 1660–1671.

    CAS  Google Scholar 

  8. Fan, H. J.; Yang, Y.; Zacharias, M. ZnO-based ternary compound nanotubes and nanowires. J. Mater. Chem.2009, 19, 885–900.

    CAS  Google Scholar 

  9. Chou, N. H.; Schaak, R. E. Shape-controlled conversion of β-Sn nanocrystals into intermetallic M-Sn (M = Fe, Co, Ni, Pd) nanocrystals. J. Am. Chem. Soc.2007, 129, 7339–7345.

    CAS  Google Scholar 

  10. He, T. O.; Wang, W. C.; Yang, X. L.; Cao, Z. M.; Kuang, Q.; Wang, Z.; Shan, Z. W.; Jin, M. S.; Yin, Y. D. Inflating hollow nanocrystals through a repeated Kirkendall cavitation process. Nat. Commun.2017, 8, 1261.

    Google Scholar 

  11. Jana, S.; Chang, J. W.; Rioux, R. M. Synthesis and modeling of hollow intermetallic Ni-Zn nanoparticles formed by the Kirkendall effect. Nano Lett.2013, 13, 3618–3625.

    CAS  Google Scholar 

  12. Niu, K. Y.; Park, J.; Zheng, H. M.; Alivisatos, A. P. Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. Nano Lett.2013, 13, 5715–5719.

    CAS  Google Scholar 

  13. Peng, S.; Sun, S. H. Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles. Angew. Chem., Int. Ed.2007, 46, 4155–4158.

    CAS  Google Scholar 

  14. Yin, Y.; Erdonmez, C. K.; Cabot, A.; Hughes, S.; Alivisatos, A. P. Colloidal synthesis of hollow cobalt sulfide nanocrystals. Adv. Funct. Mater.2006, 16, 1389–1399.

    CAS  Google Scholar 

  15. Wang, Y.; Cai, L.; Xia, Y. Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles. Adv. Mater.2005, 17, 473–477.

    CAS  Google Scholar 

  16. Henkes, A. E.; Vasquez, Y.; Schaak, R. E. Converting metals into phosphides: A general strategy for the synthesis of metal phosphide nanocrystals. J. Am. Chem. Soc.2007, 129, 1896–1897.

    CAS  Google Scholar 

  17. Feng, J. R.; Lv, F.; Zhang, W. Y.; Li, P. H.; Wang, K.; Yang, C.; Wang, B.; Yang, Y.; Zhou, J. H.; Lin, F. et al. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis. Adv. Mater.2017, 29, 1703798.

    Google Scholar 

  18. Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science2015, 349, 412–416.

    CAS  Google Scholar 

  19. Yan, K.; Lu, Z. D.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy2016, 1, 16010.

    CAS  Google Scholar 

  20. Ren, H.; Yu, R. B.; Wang, J. Y.; Jin, Q.; Yang, M.; Mao, D.; Kisailus, D.; Zhao, H. J.; Wang, D. Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano Lett.2014, 14, 6679–6684.

    CAS  Google Scholar 

  21. Chen, Y.; Li, W. Z.; Wang, J. Y.; Gan, Y. L.; Liu, L.; Ju, M. T. Microwave-assisted ionic liquid synthesis of Ti3+ self-doped TiO2 hollow nanocrystals with enhanced visible-light photoactivity. Appl. Catal. B Environ.2016, 191, 94–105.

    CAS  Google Scholar 

  22. Yang, X.; Gilroy, K. D.; Vara, M.; Zhao, M.; Zhou, S.; Xia, Y. N. Gold icosahedral nanocages: Facile synthesis, optical properties, and fragmentation under ultrasonication. Chem. Phys. Lett.2017, 683, 613–618.

    CAS  Google Scholar 

  23. Zhang, H.; Zhu, Q.; Zhang, Y.; Wang, Y.; Zhao, L.; Yu, B. One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv. Funct. Mater.2007, 17, 2766–2771.

    CAS  Google Scholar 

  24. Shevchenko, E. V.; Bodnarchuk, M. I.; Kovalenko, M. V.; Talapin, D. V.; Smith, R. K.; Aloni, S.; Heiss, W.; Alivisatos, A. P. Gold/iron oxide core/hollow-shell nanoparticles. Adv. Mater.2008, 20, 4323–4329.

    CAS  Google Scholar 

  25. Cai, X. J.; Gao, W.; Ma, M.; Wu, M. Y.; Zhang, L. L.; Zheng, Y. Y.; Chen, H. R.; Shi, J. L. A prussian blue-based core-shell hollow-structured mesoporous nanoparticle as a smart theranostic agent with ultrahigh pH-responsive longitudinal relaxivity. Adv. Mater.2015, 27, 6382–6389.

    CAS  Google Scholar 

  26. Darken, L. S. Diffusion, mobility and their interrelation through free energy in binary metallic systems. Trans. AIME1948, 175, 184–201.

    Google Scholar 

  27. Masumura, R. A.; Rath, B. B.; Pande, C. S. Analysis of Cu-Ni diffusion in a spherical geometry for excess vacancy production. Acta Mater.2002, 50, 4535–4544.

    CAS  Google Scholar 

  28. Schröder, H.; Samwer, K.; Köster, U. Micromechanism for metallic-glass formation by solid-state reactions. Phys. Rev. Lett.1985, 54, 197–200.

    Google Scholar 

  29. Zeng, K. J.; Stierman, R.; Chiu, T. C.; Edwards, D.; Ano, K.; Tu, K. N. Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability. J. Appl. Phys.2005, 97, 024508.

    Google Scholar 

  30. Tu, K. N.; Gösele, U. Hollow nanostructures based on the Kirkendall effect: Design and stability considerations. Appl. Phys. Lett.2005, 86, 093111.

    Google Scholar 

  31. Wang, C. M.; Baer, D. R.; Thomas, L. E.; Amonette, J. E.; Antony, J.; Qiang, Y.; Duscher, G. Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at room temperature. J. Appl. Phys.2005, 98, 094308.

    Google Scholar 

  32. Nakamura, R.; Lee, J. G.; Tokozakura, D.; Mori, H.; Nakajima, H. Formation of hollow ZnO through low-temperature oxidation of Zn nanoparticles. Mater. Lett.2007, 61, 1060–1063.

    CAS  Google Scholar 

  33. Nakamura, R.; Tokozakura, D.; Nakajima, H.; Lee, J. G.; Mori, H. Hollow oxide formation by oxidation of Al and Cu nanoparticles. J. Appl. Phys.2007, 101, 074303.

    Google Scholar 

  34. Pratt, A.; Lari, L.; Hovorka, O.; Shah, A.; Woffinden, C.; Tear, S. P.; Binns, C.; Kröger, R. Enhanced oxidation of nanoparticles through strain-mediated ionic transport. Nat. Mater.2014, 13, 26–30.

    CAS  Google Scholar 

  35. Marks, L. D.; Howie, A. Multiply-twinned particles in silver catalysts. Nature1979, 282, 196–198.

    CAS  Google Scholar 

  36. Howie, A.; Marks, L. D. Elastic strains and the energy balance for multiply twinned particles. Philos. Mag. A1984, 49, 95–109.

    CAS  Google Scholar 

  37. Wang, H. L.; Zhou, S.; Gilroy, K. D.; Cai, Z. S.; Xia, Y. N. Icosahedral nanocrystals of noble metals: Synthesis and applications. Nano Today2017, 15, 121–144.

    CAS  Google Scholar 

  38. Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci.2012, 5, 6352–6357.

    CAS  Google Scholar 

  39. Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem.2010, 2, 454–460.

    CAS  Google Scholar 

  40. Brown, A. M.; Ashby, M. F. Correlations for diffusion constants. Acta Metall.1980, 28, 1085–1101.

    CAS  Google Scholar 

  41. Chakraborty, J.; Welzel, U.; Mittemeijer, E. J. Interdiffusion, phase formation, and stress development in Cu-Pd thin-film diffusion couples: Interface thermodynamics and mechanisms. J. Appl. Phys.2008, 103, 113512.

    Google Scholar 

  42. Chakraborty, J.; Welzel, U.; Mittemeijer, E. J. Mechanisms of interdiffusion in Pd-Cu thin film diffusion couples. Thin Solid Films2010, 518, 2010–2020.

    CAS  Google Scholar 

  43. Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater.2008, 20, 3987–4019.

    CAS  Google Scholar 

  44. Wang, M.; Zhang, W. M.; Wang, J. Z.; Minett, A.; Lo, V.; Liu, H. K.; Chen, J. Mesoporous hollow PtCu nanoparticles for electrocatalytic oxygen reduction reaction. J. Mater. Chem. A2013, 1, 2391–2394.

    CAS  Google Scholar 

  45. Wang, C.; Sui, Y. M.; Xu, M.; Liu, C.; Xiao, G. J.; Zou, B. Synthesis of Ni-Ir nanocages with improved electrocatalytic performance for the oxygen evolution reaction. ACS Sustainable Chem. Eng.2017, 5, 9787–9792.

    CAS  Google Scholar 

  46. Zhang, C. H.; Liu, Y.; Chang, Y. X.; Lu, Y. N.; Zhao, S. L.; Xu, D. D.; Dai, Z. H.; Han, M.; Bao, J. C. Component-controlled synthesis of necklace-like hollow NixRuy nanoalloys as electrocatalysts for hydrogen evolution reaction. ACS Appl. Mater. Interfaces2017, 9, 17326–17336.

    CAS  Google Scholar 

  47. Porter, D. A.; Easterling, K. E.; Sherif, M. Y. Phase Transformations in Metals and Alloys; 3rd ed. CRC Press, Boca Raton, 2009; pp 96–98.

    Google Scholar 

  48. Yang, C. Y. Crystallography of decahedral and icosahedral particles: I. geometry of twinning. J. Cryst. Growth1979, 47, 274–282.

    CAS  Google Scholar 

  49. Marks, L. D.; Peng, L. Nanoparticle shape, thermodynamics and kinetics. J. Phys.: Condens. Matter2016, 28, 053001.

    CAS  Google Scholar 

  50. Johnson, C. L.; Snoeck, E.; Ezcurdia, M.; Rodríguez-González, B.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Hytch, M. J. Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles. Nat. Mater.2008, 7, 120–124.

    CAS  Google Scholar 

  51. Ji, W. H.; Qi, W. H.; Li, X.; Zhao, S. L.; Tang, S. S.; Peng, H. C.; Li, S. Q. Investigation of disclinations in Marks decahedral Pd nanoparticles by aberration-corrected HRTEM. Mater. Lett.2015, 152, 283–286.

    CAS  Google Scholar 

  52. Peng, L. X.; Van Duyne, R. P.; Marks, L. D. Strain-induced segregation in bimetallic multiply twinned particles. J. Phys. Chem. Lett.2015, 6, 1930–1934.

    CAS  Google Scholar 

  53. Hytch, M. J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy1998, 74, 131–146.

    CAS  Google Scholar 

  54. Goris, B.; De Beenhouwer, J.; De Backer, A.; Zanaga, D.; Batenburg, K. J.; Sánchez-Iglesias, A.; Liz-Marzán, L. M.; Van Aert, S.; Bals, S.; Sijbers, J. et al. Measuring lattice strain in three dimensions through electron microscopy. Nano Lett.2015, 15, 6996–7001.

    Google Scholar 

  55. Xi, Z.; Cheng, X.; Gao, Z. Q.; Wang, M. J.; Cai, T.; Muzzio, M.; Davidson, E.; Chen, O.; Jung, Y.; Sun, S. H. et al. Strain effect in palladium nanostructures as nanozymes. Nano Lett.2020, 20, 272–277.

    CAS  Google Scholar 

  56. Fan, H. J.; Knez, M.; Scholz, R.; Hesse, D.; Nielsch, K.; Zacharias, M.; Gösele, U. Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect: The basic concept. Nano Lett.2007, 7, 993–997.

    CAS  Google Scholar 

  57. Sun, Y. G.; Zuo, X. B.; Sankaranarayanan, S. K. R. S.; Peng, S.; Narayanan, B.; Kamath, G. Quantitative 3D evolution of colloidal nanoparticle oxidation in solution. Science2017, 356, 303–307.

    CAS  Google Scholar 

  58. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865–3868.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Nos. 51522103, 51871200, and 61721005) and the National Program for Support of Top-Notch Young Professionals.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deren Yang or Hui Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Yan, Y., Li, X. et al. Unexpected Kirkendall effect in twinned icosahedral nanocrystals driven by strain gradient. Nano Res. 13, 2641–2649 (2020). https://doi.org/10.1007/s12274-020-2903-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2903-9

Keywords

Navigation