Skip to main content
Log in

NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 31 March 2022

This article has been updated

Abstract

It is of great significance to study the brain structure and function in deep-tissue for neuroscience research and bio-medical applications because of the urgent demand for precise theranostics. Three-photon fluorescence microscopic (3PFM) bioimaging excited by the light in near-infrared IIb (NIR-IIb, 1,500–1,700 nm) spectral region is one of the most promising imaging techniques with the advantages of high spatial resolution, large imaging depth, and reduced scattering. Herein, a type of NIR-IIb light excitable deep-red emissive semiconducting polymer dots (P-dots) with bright 3PF and large three-photon absorption cross-section (σ3) at 1,550 nm was prepared. Then the P-dots were functionalized with polystyrene polymer polystyrene graft ethylene oxide functionalized with carboxyl groups (PS-PEG-COOH) and modified with NH2-poly(ethylene glycol) (PEG) to synthesis photochemically stable and biocompatible P-dots nanoparticles (NPs). Further the P-dots NPs were utilized for in vivo 3PFM bioimaging of cerebral vasculature with and without the brain skull under 1,550 nm femtosecond (fs) laser excitation. In vivo 3PFM bioimaging of the mice cerebral vasculature at various vertical depths was obtained. Moreover, a vivid three-dimensional structure of the mice vascular architecture beneath the skull was reconstructed. At the depth of 350 µm beneath the brain skull, 3.8 µm blood vessels could still be clearly recognized. NIR-IIb excitable P-dots assisted 3PFM bioimaging has great potential in accurate deep tissue bioimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Brenner, D. J.; Hall, E. J. Computed tomography—An increasing source of radiation exposure. N. Engl. J. Med.2007, 357, 2277–2284.

    Article  CAS  Google Scholar 

  2. Ji, N.; Freeman, J.; Smith, S. L. Technologies for imaging neural activity in large volumes. Naf. Neurosci.2016, 19, 1154–1164.

    Google Scholar 

  3. Wang, K. H.; Majewska, A.; Schummers, J.; Farley, B.; Hu, C.; Sur, M.; Tonegawa, S. In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell2006, 126, 389–402.

    Article  CAS  Google Scholar 

  4. Dombeck, D. A.; Harvey, C. D.; Tian, L.; Loren, L. L.; Tank, D. W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Naf. Neurosci.2010, 13, 1433–1440.

    CAS  Google Scholar 

  5. Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Naf. Biomed. Eng.2017, 1, 0010.

    Article  CAS  Google Scholar 

  6. Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F. Exploiting the biological windows: Current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horiz.2016, 1, 168–184.

    Article  CAS  Google Scholar 

  7. Qin, W.; Ding, D.; Liu, J. Z.; Yuan, W.; Hu, Y.; Liu, B.; Tang, B. Z. Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Adv. Funcf. Mafer.2012, 22, 771–779.

    Article  CAS  Google Scholar 

  8. Zhang, M. X.; Yue, J. Y.; Cui, R.; Ma, Z. R.; Wan, H.; Wang, F. F.; Zhu, S. J.; Zhou, Y.; Kuang, Y.; Zhong, Y. T. et al. Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc. Nafl. Acad. Sci. USA2018, 115, 6590–6595.

    Article  CAS  Google Scholar 

  9. Ma, Z. R.; Zhang, M. X.; Yue, J. Y.; Alcazar, C.; Zhong, Y. T.; Doyle, T. C.; Dai, H. J.; Huang, N. F. Near-infrared IIb fluorescence imaging of vascular regeneration with dynamic tissue perfusion measurement and high spatial resolution. Adv. Funcf. Mafer.2018, 28, 1803417.

    Article  Google Scholar 

  10. Zhong, Y. T.; Ma, Z. R.; Wang, F. F.; Wang, X.; Yang, Y. J.; Liu, Y. L.; Zhao, X.; Li, J. C.; Du, H. T.; Zhang, M. X. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Naf. Biofechnol.2019, 37, 1322–1331.

    CAS  Google Scholar 

  11. Kobat, D.; Durst, M. E.; Nishimura, N.; Wong, A. W.; Schaffer, C. B.; Xu, C. Deep tissue multiphoton microscopy using longer wavelength excitation. Opt. Express2009, 17, 13354–13364.

    Article  Google Scholar 

  12. Wang, K.; Horton, N. G.; Xu, C. Going deep: Brain imaging with multi-photon microscopy. Opf. Phofonics News2013, 24, 32–39.

    Article  Google Scholar 

  13. Horton, N. G; Wang, K.; Kobat, D.; Clark, C. G.; Wise, F. W.; Schaffer, C. B.; Xu, C. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Naf. Phofonics2013, 7, 205–209.

    CAS  Google Scholar 

  14. Wang, Y. L.; Chen, M.; Alifu, N.; Li, S. W.; Qin, W.; Qin, A. J.; Tang, B. Z.; Qian, J. Aggregation-induced emission luminogen with deep-red emission for through-skull three-photon fluorescence imaging of mouse. ACS Nano2017, 11, 10452–10461.

    Article  CAS  Google Scholar 

  15. Qi, J.; Sun, C. W.; Li, D. Y.; Zhang, H. Q.; Yu, W. B.; Zebibula, A.; Lam, J. W. Y.; Xi, W.; Zhu, L.; Cai, F. H. et al. Aggregation-induced emission luminogen with near-infrared-II excitation and near-infrared-I emission for ultradeep intravital two-photon microscopy. ACS Nano2018, 12, 7936–7945.

    Article  CAS  Google Scholar 

  16. Alifu, N.; Yan, L. L.; Zhang, H. Q.; Zebibula, A.; Zhu, Z. G.; Xi, W.; Roe, A. W.; Xu, B.; Tian, W. J.; Qian, J. Organic dye doped nanoparticles with NIR emission and biocompatibility for ultra-deep in vivo two-photon microscopy under 1040 nm femtosecond excitation. Dyes Pigmenfs2017, 143, 76–85.

    Article  CAS  Google Scholar 

  17. Zheng, Z.; Li, D. Y.; Liu, Z. Y.; Peng, H. Q.; Sung, H. H. Y.; Kwok, R. T. K.; Williams, I. D.; Lam J. W. Y.; Qian, J.; Tang, B. Z. Aggregation-induced nonlinear optical effects of AIEgen nanocrystals for ultradeep in vivo bioimaging. Adv. Mafer.2019, 31, 1904799.

    Article  CAS  Google Scholar 

  18. Hong, G. S.; Diao, S.; Chang, J. L.; Antaris, A. L.; Chen, C. X.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Naf. Phofonics2014, 8, 723–730.

    CAS  Google Scholar 

  19. Zong, L. Y.; Zhang, H. Q.; Li, Y. Q.; Gong, Y. B.; Li, D. Y.; Wang, J. Q.; Wang, Z.; Xie, Y. J.; Han, M. M.; Peng, Q. et al. Tunable aggregation-induced emission nanoparticles by varying isolation groups in perylenediimide derivatives and application in three-photon fluorescence bio-imaging. ACS Nano2018, 12, 9532–9540.

    Article  CAS  Google Scholar 

  20. Zhu, Z. F.; Qian, J.; Zhao, X. Y.; Qin, W.; Hu, R. R.; Zhang, H. Q.; Li, D. Y.; Xu, Z. P.; Tang, B. Z.; He, S. L. Stable and size-tunable aggregation-induced emission nanoparticles encapsulated with nanographeneoxide and applications in three-photon fluorescence bioimaging. ACS Nano2016, 10, 588–597.

    Article  CAS  Google Scholar 

  21. Zhang, H. Q.; Xie, W. S.; Chen, M.; Zhu, L.; Feng, Z.; Wang, Y. L.; Xi, W.; Tang, B.; Qian, J. Aggregation-induced emission nanoparticles for in vivo three-photon fluorescence microscopic rat brain angiography. J. Innov. Opf. Heal. Sci.2019, 12, 1950012.

    Article  CAS  Google Scholar 

  22. Wang, Y. L.; Han, X.; Xi, W.; Li, J. Y.; Roe, A. W.; Lu, P.; Qian, J. Bright AIE nanoparticles with F127 encapsulation for deep-tissue three-photon intravital brain angiography. Adv. Healfhc. Mafer.2017, 6, 1700685.

    Article  Google Scholar 

  23. Qian, J.; Zhu, Z. F.; Qin, A. J.; Qin, W.; Chu, L. L.; Cai, F. H.; Zhang, H. Q.; Wu, Q.; Hu, R. R.; Tang, B. Z. et al. High-order non-linear optical effects in organic luminogens with aggregation-induced emission. Adv. Mafer.2015, 27, 2332–2339.

    Article  CAS  Google Scholar 

  24. Chen, T. W.; Wardill, T. J.; Sun, Y.; Pulver, S. R.; Renninger, S. L.; Baohan, A.; Schreiter, E. R.; Kerr, R. A.; Orger, M. B.; Jayaraman, V. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nafure2013, 499, 295–300.

    CAS  Google Scholar 

  25. Wegner, K. D.; Hildebrandt, N. Quantum dots: Bright and versatile in vifro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev.2015, 44, 4792–4834.

    Article  CAS  Google Scholar 

  26. Wu, C. F.; Chiu, D. T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem., Inf. Ed.2013, 52, 3086–3109.

    Article  CAS  Google Scholar 

  27. Kaeser, A.; Schenning, A. P. H. J. Fluorescent nanoparticles based on self-assembled n-conjugated systems. Adv. Mafer.2010, 22, 2985–2997.

    Article  CAS  Google Scholar 

  28. Wu, C. F.; Bull, B.; Szymanski, C.; Christensen, K.; McNeill, J. Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano2008, 2, 2415–2423.

    Article  CAS  Google Scholar 

  29. Chen, L.; Chen, D. D.; Jiang, Y. F.; Zhang, J. C.; Yu, J. B.; Dufort, C. C.; Hingorani, S. R.; Zhang, X. J.; Wu, C. F.; Chiu, D. T. A BODIPY-based donor/donor-acceptor system: Towards highly efficient long-wavelength-excitable near-IR polymer dots with narrow and strong absorption features. Angew. Chem., Inf. Ed.2019, 58, 7008–7012.

    Article  CAS  Google Scholar 

  30. Liu, H. Y.; Wu, P. Y.; Kuo, S. Y.; Chen, C. P.; Chang, E. H.; Wu, C. Y.; Chan, Y. H. Quinoxaline-based polymer dots with ultrabrightred to near-infrared fluorescence for in vivo biological imaging. J. Am. Chem. Soc.2015, 137, 10420–10429.

    Article  CAS  Google Scholar 

  31. Wu, C. F.; Hansen, S. J.; Hou, Q.; Yu, J. B.; Zeigler, M.; Jin, Y. H.; Burnham, D. R.; McNeill, J. D.; Olson, J. M.; Chiu, D. T. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew. Chem.2011, 123, 3492–3496.

    Article  Google Scholar 

  32. Wu, C. F.; Schneider, T.; Zeigler, M.; Yu, J. B.; Schiro, P. G.; Burnham, D. R.; McNeill, D. J.; Chiu, D. T. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. J. Am. Chem. Soc.2010, 132, 15410–15417.

    Article  CAS  Google Scholar 

  33. Xing, G. C.; Chakrabortty, S.; Ngiam, S. W.; Chan, Y.; Sum, T. C. Three-photon absorption in seeded CdSe/CdS nanorod heterostructures. J. Phys. Chem. C2011, 115, 17711–17716.

    Article  CAS  Google Scholar 

  34. Narenji, M.; Talaee, M. R.; Moghimi, H. R. Investigating the effects of size, charge, viscosity and bilayer flexibility on liposomal delivery under convective flow. Inf. J. Pharm.2016, 513, 88–96.

    Article  CAS  Google Scholar 

  35. Olshansky, J. H.; Balan, A. D.; Ding, T. X.; Fu, X.; Lee, Y. V.; Alivisatos, A. P. Temperature-dependent hole transfer from photoexcited quantum dots to molecular species: Evidence for trap-mediated transfer. ACS Nano2017, 11, 8346–8355.

    Article  CAS  Google Scholar 

  36. Khlebtsov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vifro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647–1671.

    Article  CAS  Google Scholar 

  37. Wang, S. W.; Xi, W.; Cai, F. H.; Zhao, X. Y.; Xu, Z. P.; Qian, J.; He, S. L. Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging. Theranostics2015, 5, 251–266.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61735016, 61975172, and 91632105), Zhejiang Provincial Natural Science Foundation of China (Nos. LR17F050001 and LY17C090005), the Fundamental Research Funds for the Central Universities and State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia Fund (No. SKL-HIDCA-2019-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wang Xi, Xueliang Zhang or Jun Qian.

Electronic Supplementary Material

12274_2020_2902_MOESM1_ESM.pdf

NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alifu, N., Zebibula, A., Zhang, H. et al. NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging. Nano Res. 13, 2632–2640 (2020). https://doi.org/10.1007/s12274-020-2902-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2902-x

Keywords

Navigation