Skip to main content
Log in

Versatile and scalable chemical vapor deposition of vertically aligned MoTe2 on reusable Mo foils

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Layered MoTe2 has shown great promises for optoelectronics and energy-storage applications due to its exceptional optical and electrochemical properties. To date, considerable efforts have been devoted to fabricating layered MoTe2 with lateral orientation by means of mechanical/chemical exfoliation and chemical vapor deposition (CVD) methods. As compared to its horizontal counterparts, vertically aligned MoTe2 with higher density of active edge sites is expected to possess unique optoelectronic and electrochemical properties, while which has not been reported yet. In this work, we report a versatile and scalable CVD growth of vertically aligned MoTe2 with length of up to ∼ 7.5 µm on Mo foil. Remarkably, the dominant phase of the vertically aligned MoTe2 can be tuned from 2H to 1T’ by increasing the growth temperature from 630 to 780 °C. Owing to the weak interaction between the as-grown MoTe2 and Mo foil, the as-grown MoTe2 can be easily detached from the Mo foil. This in turn enabled economic reuse of the Mo foil for multiple growth. Moreover, the vertical growth of the MoTe2 is proposed to be caused by the internal strain generated during tellurization of Mo foil. Furthermore, the as-grown MoTe2 can also be directly dispersed in solvent to produce high-quality MoTe2 nanosheets. The versatility of this growth strategy was further demonstrated by fabricating other vertically aligned TMDs such as TaTe2 and MoSe2. Hence, this work paves the path towards achieving unique TMDs structures to enable high-performance optoelectronic and electrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bie, Y. Q.; Grosso, G.; Heuck, M.; Furchi, M. M.; Cao, Y.; Zheng, J. B.; Bunandar, D.; Navarro-Moratalla, E.; Zhou, L.; Efetov, D. K. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol.2017, 12, 1124–1129.

    CAS  Google Scholar 

  2. Zhang, Q. Y.; Yang, S. A.; Mi, W. B.; Cheng, Y.; Schwingenschlogl, U. Large spin-valley polarization in monolayer MoTe2 on top of EuO(111). Adv. Mater.2016, 28, 959–966.

    CAS  Google Scholar 

  3. Ruppert, C.; Aslan, O. B.; Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett.2014, 14, 6231–6236.

    CAS  Google Scholar 

  4. Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D. H.; Sung, H. J.; Kan, M.; Kang, H.; Hwang, J. Y.; Kim, S. W.; Yang, H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys.2015, 11, 482–486.

    CAS  Google Scholar 

  5. Zhang, F.; Zhang, H. R.; Krylyuk, S.; Milligan, C. A.; Zhu, Y. Q.; Zemlyanov, D. Y.; Bendersky, L. A.; Burton, B. P.; Davydov, A. V.; Appenzeller, J. Electric-field induced structural transition in vertical MoTe2- and Mo1−x W,Te2-based resistive memories. Nat. Mater.2019, 18, 55–61.

    CAS  Google Scholar 

  6. Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science2015, 349, 625–628.

    CAS  Google Scholar 

  7. Sung, J. H.; Heo, H.; Si, S.; Kim, Y. H.; Noh, H. R.; Song, K.; Kim, J.; Lee, C. S.; Seo, S. Y.; Kim, D. H. et al. Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. Nat. Nanotechnol.2017, 12, 1064–1070.

    CAS  Google Scholar 

  8. Pradhan, N. R.; Rhodes, D.; Feng, S. M.; Xin, Y.; Memaran, S.; Moon, B. H.; Terrones, H.; Terrones, M.; Balicas, L. Field-effect transistors based on few-layered alpha-MoTe2. ACS Nano2014, 8, 5911–5920.

    CAS  Google Scholar 

  9. Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano. Lett.2013, 13, 1341–1347.

    CAS  Google Scholar 

  10. Jung, Y.; Shen, J.; Liu, Y. H.; Woods, J. M.; Sun, Y.; Cha, J. J. Metal seed layer thickness-induced transition from vertical to horizontal growth of MoS2 and WS2. Nano Lett.2014, 14, 6842–6849.

    CAS  Google Scholar 

  11. Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; Xie, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B. et al. Fast, Self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater.2018, 28, 1705970.

    Google Scholar 

  12. Han, S. S.; Kim, J. H.; Noh, C.; Kim, J. H.; Ji, E.; Kwon, J.; Yu, S. M.; Ko, T. J.; Okogbue, E.; Oh, K. H. et al. Horizontal-to-vertical transition of 2D layer orientation in low-temperature chemical vapor deposition-grown PtSe2 and its influences on electrical properties and device applications. ACS Appl. Mater. Interfaces2019, 11, 13598–13607.

    CAS  Google Scholar 

  13. Cho, S. Y.; Kim, S. J.; Lee, Y.; Kim, J. S.; Jung, W. B.; Yoo, H. W.; Kim, J.; Jung, H. T. Highly enhanced gas adsorption properties in vertically aligned MoS2 layers. ACS Nano2015, 9, 9314–9321.

    CAS  Google Scholar 

  14. Jung, Y.; Shen, J.; Sun, Y.; Cha, J. J. Chemically synthesized heterostructures of two-dimensional molybdenum/tungsten-based dichalcogenides with vertically aligned layers. ACS Nano2014, 8, 9550–9557.

    CAS  Google Scholar 

  15. Yu, J. H.; Lee, H. R.; Hong, S. S.; Kong, D. S.; Lee, H. W.; Wang, H. T.; Xiong, F.; Wang, S.; Cui, Y. Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers. Nano Lett.2015, 15, 1031–1035.

    CAS  Google Scholar 

  16. Zhuang, P. Y.; Sun, Y. Y.; Dong, P.; Smith, W.; Sun, Z. Z.; Ge, Y. C.; Pei, Y.; Cao, Z. Y.; Ajayan, P. M.; Shen, J. F. et al. Revisiting the role of active sites for hydrogen evolution reaction through precise defect adjusting. Adv. Funct. Mater.2019, 29, 1901290.

    Google Scholar 

  17. Su, J. W.; Liu, K. L.; Wang, F. K.; Jin, B.; Guo, Y. B.; Liu, G. H.; Li, H. Q.; Zhai, T. Y. Van der waals 2D transition metal tellurides. Adv. Mater. Interfaces2019, 6, 1900741.

    CAS  Google Scholar 

  18. Yamamoto, M.; Wang, S. T.; Ni, M. Y.; Lin, Y. F.; Li, S. L.; Aikawa, S.; Jian, W. B.; Ueno, K.; Wakabayashi, K.; Tsukagoshi, K. Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe2. ACS Nano2014, 8, 3895–3903.

    CAS  Google Scholar 

  19. Wang, B.; Yang, S. X.; Wang, C.; Wu, M. H.; Huang, L.; Liu, Q.; Jiang, C. B. Enhanced current rectification and self-powered photoresponse in multilayer p-MoTe2/n-MoS2 van der Waals heterojunctions. Nanoscale2017, 9, 10733–10740.

    CAS  Google Scholar 

  20. Gholamvand, Z.; McAteer, D.; Backes, C.; McEvoy, N.; Harvey, A.; Berner, N. C.; Hanlon, D.; Bradley, C.; Godwin, I.; Rovetta, A. et al. Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe2 to be the most effective hydrogen evolution catalyst. Nanoscale2016, 8, 5737–5749.

    CAS  Google Scholar 

  21. Cunningham, G.; Lotya, M.; Cucinotta, C. S.; Sanvito, S.; Bergin, S. D.; Menzel, R.; Shaffer, M. S. P.; Coleman, J. N. Solvent Exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano2012, 6, 3468–3480.

    CAS  Google Scholar 

  22. Zhou, L.; Zubair, A.; Wang, Z. Q.; Zhang, X.; Ouyang, F. P.; Xu, K.; Fang, W. J.; Ueno, K.; Li, J.; Palacios, T. et al. Synthesis of high-quality large-area homogenous 1T’ MoTe2 from chemical vapor deposition. Adv. Mater.2016, 28, 9526–9531.

    CAS  Google Scholar 

  23. Park, J. C.; Yun, S. J.; Kim, H.; Park, J. H.; Chae, S. H.; An, S. J.; Kim, J. G.; Kim, S. M.; Kim, K. K.; Lee, Y. H. Phase-engineered synthesis of centimeter-scale 1T’- and 2H-molybdenum ditelluride thin films. ACS Nano2015, 9, 6548–6554.

    CAS  Google Scholar 

  24. Yang, L.; Zhang, W. F.; Li, J.; Cheng, S.; Xie, Z. J.; Chang, H. X. Tellurization velocity-dependent metallic-semiconducting-metallic phase evolution in chemical vapor deposition growth of large-area, few-layer MoTe2. ACS Nano2017, 11, 1964–1972.

    CAS  Google Scholar 

  25. Zhang, Q. Q.; Xiao, Y.; Zhang, T.; Weng, Z.; Zeng, M. Q.; Yue, S. L.; Mendes, R. G.; Wang, L. X.; Chen, S. L.; Rümmeli, M. H. et al. Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides. Chem. Mater.2017, 29, 4641–4644.

    CAS  Google Scholar 

  26. Song, Q. J.; Tan, Q. H.; Zhang, X.; Wu, J. B.; Sheng, B. W.; Wan, Y.; Wang, X. Q.; Dai, L.; Tan, P. H. Physical origin of davydov splitting and resonant Raman spectroscopy of davydov components in multilayer MoTe2. Phys. Rev. B2016, 93, 115409.

    Google Scholar 

  27. Sun, Y. F.; Wang, Y. X.; Sun, D.; Carvalho, B. R.; Read, C. G.; Lee, C. H.; Lin, Z.; Fujisawa, K.; Robinson, J. A.; Crespi, V. H. et al. Low-temperature solution synthesis of few-layer 1T’-MoTe2 nanostructures exhibiting lattice compression. Angew. Chem., Int. Ed.2016, 55, 2830–2834.

    CAS  Google Scholar 

  28. Xie, S.; Chen, L.; Zhang, T. B.; Nie, X. R.; Zhu, H.; Ding, S. J.; Sun, Q. Q.; Zhang, D. W. Fast solid-phase synthesis of large-area few-layer 1T’-MoTe2 films. J. Cryst. Growth2017, 467, 29–33.

    CAS  Google Scholar 

  29. Bernède, J. C.; Amory, C.; Assmann, L.; Spiesser, M. X-ray Photoelectron spectroscopy study of MoTe2 single crystals and thin films. Appl. Surf. Sci.2003, 219, 238–248.

    Google Scholar 

  30. Sirota, B.; Glavin, N.; Krylyuk, S.; Davydov, A. V.; Voevodin, A. A. Hexagonal MoTe2 with amorphous BN passivation layer for improved oxidation resistance and endurance of 2D field effect transistors. Sci. Rep.2018, 8, 8668.

    Google Scholar 

  31. Zhou, L.; Xu, K.; Zubair, A.; Zhang, X.; Ouyang, F. P.; Palacios, T.; Dresselhaus, M. S.; Li, Y. F.; Kong, J. Role of molecular sieves in the CVD synthesis of large-area 2D MoTe2. Adv. Funct. Mater.2017, 27, 1603491.

    Google Scholar 

  32. Mirabelli, G.; McGeough, C.; Schmidt, M.; McCarthy, E. K.; Monaghan, S.; Povey, I. M.; McCarthy, M.; Gity, F.; Nagle, R.; Hughes, G. et al. Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2. J. Appl. Phys.2016, 120, 125102.

    Google Scholar 

  33. Naylor, C. H.; Parkin, W. M.; Gao, Z. L.; Berry, J.; Zhou, S. S.; Zhang, Q. C.; McClimon, J. B.; Tan, L. Z.; Kehayias, C. E.; Zhao, M. Q. et al. Synthesis and physical properties of phase-engineered transition metal dichalcogenide monolayer heterostructures. ACS Nano2017, 11, 8619–8627.

    CAS  Google Scholar 

  34. Zhang, X.; Jin, Z. H.; Wang, L. Q.; Hachtel, J. A.; Villarreal, E.; Wang, Z. X.; Ha, T.; Nakanishi, Y.; Tiwary, C. S.; Lai, J. W. et al. Low contact barrier in 2H/1T’ MoTe2 in-plane heterostructure synthesized by chemical vapor deposition. ACS Appl. Mater. Interfaces2019, 11, 12777–12785.

    CAS  Google Scholar 

  35. Zhou, L.; Xu, K.; Zubair, A.; Liao, A. D.; Fang, W. J.; Ouyang, F. P.; Lee, Y. H.; Ueno, K.; Saito, R.; Palacios, T. et al. Large-area synthesis of high-quality uniform few-layer MoTe2. J. Am. Chem. Soc.2015, 137, 11892–11895.

    CAS  Google Scholar 

  36. Yan, X. J.; Lv, Y. Y.; Li, L.; Li, X.; Yao, S. H.; Chen, Y. B.; Liu, X. P.; Lu, H.; Lu, M. H.; Chen, Y. F. Investigation on the phase-transition-induced hysteresis in the thermal transport along the c-axis of MoTe2. npj Quantum Mater.2017, 2, 31.

    Google Scholar 

  37. Dixit, V.; Vyas, C.; Patel, A.; Pathak, V. M.; Solanki, G. K.; Patel, K. D. Growth, morphological properties and pulsed photo response of MoTe2 single crystal synthesized by DVT technique. AIP Conf. Proc.2018, 1961, 030017.

    Google Scholar 

  38. Kwak, J.; Jo, Y.; Song, S.; Kim, J. H.; Kim, S. Y.; Lee, J. U.; Lee, S.; Park, J.; Kim, K.; Lee, G D. et al. Single-crystalline nanobelts composed of transition metal ditellurides. Adv. Mater.2018, 30, 1707260.

    Google Scholar 

  39. McGlynn, J. C.; Cascallana-Matías, I.; Fraser, J. P.; Roger, I.; McAllister, J.; Miras, H. N.; Symes, M. D.; Ganin, A. Y. Molybdenum ditelluride rendered into an efficient and stable electrocatalyst for the hydrogen evolution reaction by polymorphic control. Energy Technol.2018, 6, 345–350.

    CAS  Google Scholar 

  40. Liu, M.; Wang, Z. J.; Liu, J. X.; Wei, G. J.; Du, J.; Li, Y. P.; An, C. H.; Zhang, J. Synthesis of few-layer 1T’-MoTe2 ultrathin nanosheets for high-performance pseudocapacitors. J. Mater. Chem. A2017, 5, 1035–1042.

    CAS  Google Scholar 

  41. Yoo, Y.; DeGregorio, Z. P.; Su, Y.; Koester, S. J.; Johns, J. E. In-plane 2H-1T’ MoTe2 homojunctions synthesized by flux-controlled phase engineering. Adv. Mater.2017, 29, 1605461.

    Google Scholar 

  42. Chen, S. Y.; Goldstein, T.; Venkataraman, D.; Ramasubramaniam, A.; Yan, J. Activation of new Raman modes by inversion symmetry breaking in type II weyl semimetal candidate T’-MoTe2. Nano Lett.2016, 16, 5852–5860.

    CAS  Google Scholar 

  43. Yu, Q. H.; Wang, Y. Y.; Xu, S.; Sun, L. L.; Xia, T. L. Low-temperature properties of β-MoTe2 grown by the chemical vapor transport method. EPL2016, 115, 37007.

    Google Scholar 

  44. Empante, T. A.; Zhou, Y.; Klee, V.; Nguyen, A. E.; Lu, I. H.; Valentin, M. D.; Naghibi Alvillar, S. A.; Preciado, E.; Berges, A. J.; Merida, C. S. et al. Chemical vapor deposition growth of few-layer MoTe2 in the 2H, 1T’, and 1T phases: Tunable properties of MoTe2 films. ACS Nano2017, 11, 900–905.

    CAS  Google Scholar 

  45. Xu, X. L.; Chen, S. L.; Liu, S.; Cheng, X.; Xu, W. J.; Li, P.; Wan, Y.; Yang, S. Q.; Gong, W. T.; Yuan, K. et al. Millimeter-scale single-crystalline semiconducting MoTe2 via solid-to-solid phase transformation. J. Am. Chem. Soc.2019, 141, 2128–2134.

    CAS  Google Scholar 

  46. Choudhary, N.; Chung, H. S.; Kim, J. H.; Noh, C.; Islam, A.; Oh, K. H.; Coffey, K.; Jung, Y.; Jung, Y. Strain-driven and layer-number-dependent crossover of growth mode in van der waals heterostructures: 2D/2D layer-by-layer horizontal epitaxy to 2D/3D vertical reorientation. Adv. Mater. Interfaces2018, 5, 1800382.

    Google Scholar 

  47. Luxa, J.; Vosecky, P.; Mazánek, V.; Sedmidubsky, D.; Pumera, M.; Lazar, P.; Sofer, Z. Layered transition-metal ditellurides in electrocatalytic applications-contrasting properties. ACS Catal.2017, 7, 5706–5716.

    CAS  Google Scholar 

  48. Ma, N.; Zhang, M. K.; Wang, X. S.; Zhang, L.; Feng, J.; Zhang, X. Z. NIR light-triggered degradable MoTe2 nanosheets for combined photothermal and chemotherapy of cancer. Adv. Funct. Mater.2018, 28, 1801139.

    Google Scholar 

  49. Panda, M. R.; Raj K, A.; Ghosh, A.; Kumar, A.; Muthuraj, D.; Sau, S.; Yu, W. Z.; Zhang, Y. P.; Sinha, A. K.; Weyland, M. et al. Blocks of molybdenum ditelluride: A high rate anode for sodium-ion battery and full cell prototype study. Nano Energy2019, 64, 103951.

    CAS  Google Scholar 

  50. Ding, Y.; Wang, Z. L. Structure analysis of nanowires and nanobelts by transmission electron microscopy. J. Phys. Chem. B2004, 108, 12280–12291.

    CAS  Google Scholar 

  51. Chen, S. Y.; Naylor, C. H.; Goldstein, T.; Johnson, A. T. C.; Yan, J. Intrinsic phonon bands in high-quality monolayer T’ molybdenum ditelluride. ACS Nano2017, 11, 814–820.

    CAS  Google Scholar 

  52. Shaw, J. C.; Zhou, H. L.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang, Y.; Duan, X. F. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res.2014, 7, 511–517.

    CAS  Google Scholar 

  53. Mahjouri–Samani, M.; Lin, M. W.; Wang, K.; Lupini, A. R.; Lee, J.; Basile, L.; Boulesbaa, A.; Rouleau, C. M.; Puretzky, A. A.; Ivanov, I. N. et al. Patterned arrays of lateral heterojunctions within monolayer two–dimensional semiconductors. Nat. Commun.2015, 6, 7749.

    Google Scholar 

  54. Gao, J. J.; Si, J. G.; Luo, X.; Yan, J.; Chen, F. C.; Lin, G. T.; Hu, L.; Zhang, R. R.; Tong, P.; Song, W. H. et al. Origin of the structural phase transition in single-crystal TaTe2. Phys. Rev. B2018, 98, 224104.

    CAS  Google Scholar 

  55. Li, J.; Zhao, B.; Chen, P.; Wu, R. X.; Li, B.; Xia, Q. L.; Guo, G. H.; Luo, J.; Zang, K. T.; Zhang, Z. W. et al. Synthesis of ultrathin metallic MTe2 (M=V, Nb, Ta) single-crystalline nanoplates. Adv. Mater.2018, 30, 1801043.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Liu or Edwin Hang Tong Teo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Wang, H., Tay, R.Y. et al. Versatile and scalable chemical vapor deposition of vertically aligned MoTe2 on reusable Mo foils. Nano Res. 13, 2371–2377 (2020). https://doi.org/10.1007/s12274-020-2857-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2857-y

Keywords

Navigation