Skip to main content
Log in

A systematic assessment of hydroxyapatite nanoparticles used in the treatment of melanoma

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Melanoma is a highly malignant skin tumor which is prone to recurrence and metastasis. Hydroxyapatite nanoparticles (nHAPs) were reported to possess a suppressive effect on proliferation of various tumor cells in vitro. This study aimed to assess in vitro and in vivo anti-tumor ability and biosafety of the nHAPs used in the treatment of melanoma. Three types of nHAPs with different morphology and crystallinity were synthesized. In vitro cell viability and proliferation studies demonstrated that all three types of nHAPs can inhibit viability and proliferation of A375 and SK-MEL-28 melanoma cells in a concentration-dependent manner. In addition, the rod-shape nHAPs with a crystallinity of 45.60% had the most prominent suppressive effect on the two melanoma cells tested. An important positive regulator of G1/S phase transition in cell cycle, Cyclin D1 protein, was reduced by nHAPs treatment in vivo. We further discovered that the migration ability of the nHAPs treated melanoma cells was greatly decreased. RNA sequencing result revealed that melanoma metastasis related genes were down-regulated by nHAPs, including MMP2, MMP14, ITGA9, ITGB3, ITGB4 and S100B. High concentration of nHAPs treatment in melanoma-bearing nude mice showed a strong inhibitory effect on tumor size and weight. Most importantly, hemolysis, electrolyte disturbance or inflammation response was not discovered in the experimental animals from nHAPs treated groups. We proved that the nHAPs synthesized in the current study has a selective effect to suppress melanoma tumor proliferation and was safe with regard to normal cells and tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kawczyk-Krupka, A.; Bugaj, A. M.; Latos, W.; Zaremba, K.; Sieroń, A. Photodynamic therapy in treatment of cutaneous and choroidal melanoma. Photodiagnosis Photodyn. Ther.2013, 10, 503–509.

    CAS  Google Scholar 

  2. Domingues, B.; Lopes, J. M.; Soares, P.; Pópulo, H. Melanoma treatment in review. Immunotargets Ther.2018, 7, 35–49.

    CAS  Google Scholar 

  3. Luo, L. J.; Shu, R.; Wu, A. G. Nanomaterial-based cancer immunotherapy. J. Mater. Chem. B2017, 5, 5517–5531.

    CAS  Google Scholar 

  4. Zhang, Y.; Bush, X.; Yan, B. F.; Chen, J. A. Gemcitabine nanoparticles promote antitumor immunity against melanoma. Biomaterials2019, 189, 48–59.

    CAS  Google Scholar 

  5. Zeng, Z.; Wei, Z. L.; Ma, L. M.; Xu, Y.; Xing, Z. H.; Niu, H.; Wang, H. B.; Huang, W. pH-responsive nanoparticles based on ibuprofen prodrug as drug carriers for inhibition of primary tumor growth and Metastasis. J. Mater. Chem. B2017, 5, 6860–6868.

    CAS  Google Scholar 

  6. Li, L.; Song, L. J.; Yang, X.; Li, X.; Wu, Y. Z.; He, T.; Wang, N.; Yang, S. L. X.; Zeng, Y.; Yang, L. et al. Multifunctional “core-shell” nanoparticles-based gene delivery for treatment of aggressive melanoma. Biomaterials2016, 111, 124–137.

    CAS  Google Scholar 

  7. Fraix, A.; Manet, I.; Ballestri, M.; Guerrini, A.; Dambruoso, P.; Sotgiu, G.; Varchi, G.; Camerin, M.; Coppellotti, O.; Sortino, S. Polymer nanoparticles with electrostatically loaded multicargo for combined cancer phototherapy. J. Mater. Chem. B2015, 3, 3001–3010.

    CAS  Google Scholar 

  8. Su, H.; Wang, Y. F.; Gu, Y. L.; Bowman, L.; Zhao, J. S.; Ding, M. Potential applications and human biosafety of nanomaterials used in nanomedicine. J. Appl. Toxicol.2018, 38, 3–24.

    CAS  Google Scholar 

  9. Xu, Z. L.; Liu, C. S.; Wei, J.; Sun, J. Effects of four types of hydroxyapatite nanoparticles with different nanocrystal morphologies and sizes on apoptosis in rat osteoblasts. J. Appl. Toxicol.2012, 32, 429–435.

    CAS  Google Scholar 

  10. Yuan, Y.; Liu, C. S.; Qian, J. C.; Wang, J.; Zhang, Y. Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials2010, 31, 730–740.

    CAS  Google Scholar 

  11. Szcześ, A.; Hołysz, L.; Chibowski, E. Synthesis of hydroxyapatite for biomedical applications. Adv. Colloid Interface Sci.2017, 249, 321–330.

    Google Scholar 

  12. Lee, W. H.; Loo, C. Y.; Rohanizadeh, R. Functionalizing the surface of hydroxyapatite drug carrier with carboxylic acid groups to modulate the loading and release of curcumin nanoparticles. Mater. Sci. Eng. C2019, 99, 929–939.

    CAS  Google Scholar 

  13. Farokhi, M.; Mottaghitalab, F.; Samani, S.; Shokrgozar, M. A.; Kundu, S. C.; Reis, R. L.; Fatahi, Y.; Kaplan, D. L. Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol. Adv.2018, 36, 68–91.

    CAS  Google Scholar 

  14. Aoki, H.; Ohgaki, M.; Kano, S. Effects of Adriacin-absorbing hydroxyapatite-sol on Ca-9 cell growth. Rep. Inst. Med. Dent. Eng.1993, 27, 39–44.

    CAS  Google Scholar 

  15. Jin, J.; Zuo, G. F.; Xiong, G. Y.; Luo, H. L.; Li, Q. P.; Ma, C. Y.; Li, D. Y.; Gu, F.; Ma, Y. J.; Wan, Y. Z. The inhibition of lamellar hydroxyapatite and lamellar magnetic hydroxyapatite on the migration and adhesion of breast cancer cells. J. Mater. Sci.: Mater. Med.2014, 25, 1025–1031.

    CAS  Google Scholar 

  16. Zhao, H.; Wu, C. H.; Gao, D.; Chen, S. P.; Zhu, Y. D.; Sun, J.; Luo, H. R.; Yu, K.; Fan, H. S.; Zhang, X. D. Antitumor effect by hydroxyapatite nanospheres: Activation of mitochondria-dependent apoptosis and negative regulation of phosphatidylinositol-3-Kinase/Protein Kinase B pathway. ACS Nano2018, 12, 7838–7854.

    CAS  Google Scholar 

  17. Tang, W.; Yuan, Y.; Liu, C. S.; Wu, Y. Q.; Lu, X.; Qian, J. C. Differential cytotoxicity and particle action of hydroxyapatite nanoparticles in human cancer cells. Nanomedicine2014, 9, 397–412.

    CAS  Google Scholar 

  18. Meena, R.; Kesari, K. K.; Rani, M.; Paulraj, R. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7). J. Nanopart. Res.2012, 14, 712.

    Google Scholar 

  19. Han, Y. C.; Li, S. P.; Cao, X. Y.; Yuan, L.; Wang, Y. F.; Yin, Y. X.; Qiu, T.; Dai, H. L.; Wang, X. Y. Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo. Sci. Rep.2014, 4, 7134.

    CAS  Google Scholar 

  20. Zhang, H. F.; Qing, F. Z.; Zhao, H.; Fan, H. S.; Liu, M.; Zhang, X. D. Cellular internalization of rod-like nano hydroxyapatite particles and their size and dose-dependent effects on pre-osteoblasts. J. Mater. Chem. B2017, 5, 1205–1217.

    CAS  Google Scholar 

  21. Qing, F. Z.; Wang, Z.; Hong, Y. L.; Liu, M.; Guo, B.; Luo, H. R.; Zhang, X. D. Selective effects of hydroxyapatite nanoparticles on osteosarcoma cells and osteoblasts. J. Mater. Sci.: Mater. Med.2012, 23, 2245–2251.

    CAS  Google Scholar 

  22. Zhang, K.; Zhou, Y.; Xiao, C.; Zhao, W. L.; Wu, H. F.; Tang, J. Q.; Li, Z. T.; Yu, S.; Li, X. F.; Min, L. et al. Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect. Sci. Adv.2019, 5, eaax6946.

    CAS  Google Scholar 

  23. Guo, B.; Li, B.; Wang, X. L.; Zhang, M. X.; Yan, N. H.; Zhang, X. D. Influence of different hydroxyapatite particles on the behavior of highly malignant melanoma cells. Key Eng. Mater.2007, 330–332, 279–282.

    Google Scholar 

  24. Li, B.; Guo, B.; Fan, H. S.; Zhang, X. D. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro. Appl. Surf. Sci.2008, 255, 357–360.

    CAS  Google Scholar 

  25. Devanand Venkatasubbu, G.; Ramasamy, S.; Avadhani, G. S.; Palanikumar, L.; Kumar, J. Size-mediated cytotoxicity of nanocrystalline titanium dioxide, pure and zinc-doped hydroxyapatite nanoparticles in human hepatoma cells. J. Nanopart. Res.2012, 14, 819.

    Google Scholar 

  26. Tay, C. Y.; Fang, W. R.; Setyawati, M. I.; Chia, S. L.; Tan, K. S.; Hong, C. H. L.; Leong, D. T. Nano-hydroxyapatite and nano-titanium dioxide exhibit different subcellular distribution and apoptotic profile in human oral epithelium. ACS Appl. Mater. Interfaces2014, 6, 6248–6256.

    CAS  Google Scholar 

  27. Shen, L.; Liu, L. B.; Yang, Z. Y.; Jiang, N. Identification of genes and signaling pathways associated with squamous cell carcinoma by bioinformatics analysis. Oncol. Lett.2016, 11, 1382–1390.

    CAS  Google Scholar 

  28. Dower, C. M.; Wills, C. A.; Frisch, S. M.; Wang, H. G. Mechanisms and context underlying the role of autophagy in cancer metastasis. Autophagy2018, 14, 1110–1128.

    CAS  Google Scholar 

  29. Ma, X. H.; Wu, Y. T.; Zhang, T.; Song, H.; Jv, H. Y.; Guo, W.; Ren, G. X. Ki67 proliferation index as a histopathological predictive and prognostic parameter of oral mucosal melanoma in patients without distant metastases. J. Cancer2017, 8, 3828–3837.

    Google Scholar 

  30. Liu, L. N.; Zhang, H. M.; Shi, L.; Zhang, W. J.; Yuan, J. L.; Chen, X.; Liu, J. J.; Zhang, Y.; Wang, Z. P. Inhibition of Rac1 activity induces G1/S phase arrest through the GSK3/cyclin D1 pathway in human cancer cells. Oncol. Rep.2014, 32, 1395–1400.

    CAS  Google Scholar 

  31. Azevedo-Barbosa, H.; Ferreira-Silva, G. Á.; Silva, C. F.; De Souza, T. B.; Dias, D. F.; De Paula, A. C. C.; Ionta, M.; Carvalho, D. T. Phenylpropanoid-based sulfonamide promotes cyclin D1 and cyclin E down-regulation and induces cell cycle arrest at G1/S transition in estrogen positive MCF-7 cell line. Toxicol. Vitro2019, 59, 150–160.

    CAS  Google Scholar 

  32. Musgrove, E. A.; Caldon, C. E.; Barraclough, J.; Stone, A.; Sutherland, R. L. Cyclin D as a therapeutic target in cancer. Nat. Rev. Cancer2011, 11, 558–572.

    CAS  Google Scholar 

  33. Katunarić, M.; Jurišić, D.; Petković, M.; Grahovac, M.; Grahovac, B.; Zamolo, G. EGFR and cyclin D1 in nodular melanoma: Correlation with pathohistological parameters and overall survival. Melanoma Res.2014, 24, 584–591.

    Google Scholar 

  34. Müller, D. W.; Bosserhoff, A. K. Integrin β3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene2008, 27, 6698–6706.

    Google Scholar 

  35. Hodi, F. S.; O’Day, S. J.; McDermott, D. F.; Weber, R. W.; Sosman, J. A.; Haanen, J. B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J. C. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med.2010, 363, 711–723.

    CAS  Google Scholar 

  36. Chen, X. J.; Deng, C. S.; Tang, S. L.; Zhang, M. Mitochondria-dependent apoptosis induced by nanoscale hydroxyapatite in human gastric cancer SGC-7901 cells. Biol. Pharm. Bull.2007, 30, 128–132.

    Google Scholar 

  37. Chu, S. H.; Feng, D. F.; Ma, Y. B.; Li, Z. Q. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo. Int. J. Nanomedicine2012, 7, 3659–3666.

    CAS  Google Scholar 

  38. Sun, Y.; Chen, Y. Y.; Ma, X. Y.; Yuan, Y.; Liu, C. S.; Kohn, J.; Qian, J. C. Mitochondria-targeted hydroxyapatite nanoparticles for selective growth inhibition of lung cancer in vitro and in vivo. ACS Appl. Mater. Interfaces2016, 8, 25680–25690.

    CAS  Google Scholar 

  39. Lotfian, H.; Nemati, F. Cytotoxic effect of TiO2 nanoparticles on breast cancer cell line (MCF-7). IIOAB J.2016, 7, 219–224.

    Google Scholar 

  40. Han, Y. C.; Wang, X. Y.; Dai, H. L.; Li, S. P. Nanosize and surface charge effects of hydroxyapatite nanoparticles on red blood cell suspensions. ACS Appl. Mater. Interfaces2012, 4, 4616–4622.

    CAS  Google Scholar 

  41. Jordan, A.; Scholz, R.; Wust, P.; Schirra, H.; Schiestel, T.; Schmidt, H.; Felix, R. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J. Magn. Magn. Mater.1999, 194, 185–196.

    CAS  Google Scholar 

  42. Navarro-Requena, C.; Pérez-Amodio, S.; Castaño, O.; Engel, E. Wound healing-promoting effects stimulated by extracellular calcium and calcium-releasing nanoparticles on dermal fibroblasts. Nanotechnology2018, 29, 395102.

    Google Scholar 

  43. Li, Y.; Tan, B. B.; Zhao, Q.; Fan, L. Q.; Wang, D.; Liu, Y. ZNF139 promotes tumor metastasis by increasing migration and invasion in human gastric cancer cells. Neoplasma2014, 61, 291–298.

    CAS  Google Scholar 

  44. Elkin, M.; Ariel, I.; Miao, H. Q.; Nagler, A.; Pines, M.; De-Groot, N.; Hochberg, A.; Vlodavsky, I. Inhibition of bladder carcinoma angiogenesis, stromal support, and tumor growth by halofuginone. Cancer Res.1999, 59, 4111–4118.

    CAS  Google Scholar 

  45. Qian, Q.; Wang, Q.; Zhan, P.; Peng, L.; Wei, S. Z.; Shi, Y.; Song, Y. The role of matrix metalloproteinase 2 on the survival of patients with non-small cell lung cancer: A systematic review with meta-analysis. Cancer Invest.2010, 28, 661–669.

    Google Scholar 

  46. Merchant, N.; Nagaraju, G. P.; Rajitha, B.; Lammata, S.; Jella, K. K.; Buchwald, Z. S.; Lakka, S. S.; Ali, A. N. Matrix metalloproteinases: Their functional role in lung cancer. Carcinogenesis2017, 38, 766–780.

    CAS  Google Scholar 

  47. Marusak, C.; Bayles, I.; Ma, J.; Gooyit, M.; Gao, M.; Chang, M.; Bedogni, B. The thiirane-based selective MT1-MMP/MMP2 inhibitor ND-322 reduces melanoma tumor growth and delays metastatic dissemination. Pharmacol. Res.2016, 113, 515–520.

    CAS  Google Scholar 

  48. Jiao, Y.; Feng, X.; Zhan, Y. P.; Wang, R. F.; Zheng, S.; Liu, W. G.; Zeng, X. L. Matrix metalloproteinase-2 promotes αvβ3 integrin-mediated adhesion and migration of human melanoma cells by cleaving fibronectin. PLoS One.2012, 7, e41591.

    CAS  Google Scholar 

  49. Sato, H.; Takino, T.; Okada, Y.; Cao, J.; Shinagawa, A.; Yamamoto, E.; Seiki, M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature.1994, 370, 61–65.

    CAS  Google Scholar 

  50. Moro, N.; Mauch, C.; Zigrino, P. Metalloproteinases in melanoma. Eur. J. Cell Biol.2014, 93, 23–29.

    CAS  Google Scholar 

  51. Kurschat, P.; Wickenhauser, C.; Groth, W.; Krieg, T.; Mauch, C. Identification of activated matrix metalloproteinase-2 (MMP-2) as the main gelatinolytic enzyme in malignant melanoma by in situ zymography. J. Pathol.2002, 197, 179–187.

    CAS  Google Scholar 

  52. Itoh, Y. MT1-MMP: A key regulator of cell migration in tissue. IUBMB Life.2006, 58, 589–596.

    CAS  Google Scholar 

  53. Lydolph, M. C.; Morgan-Fisher, M.; Høye, A. M.; Couchman, J. R.; Wewer, U. M.; Yoneda, A. α9β1 integrin in melanoma cells can signal different adhesion states for migration and anchorage. Exp. Cell Res.2009, 315, 3312–3324.

    CAS  Google Scholar 

  54. Zhang, J.; Na, S. J.; Liu, C. Y.; Pan, S. T.; Cai, J. Y.; Qiu, J. X. MicroRNA-125b suppresses the epithelial-mesenchymal transition and cell invasion by targeting ITGA9 in melanoma. Tumor Biol.2016, 37, 5941–5949.

    CAS  Google Scholar 

  55. Li, X. L.; Liu, L.; Li, D. D.; He, Y. P.; Guo, L. H.; Sun, L. P.; Liu, L. N.; Xu, H. X.; Zhang, X. P. Integrin β4 promotes cell invasion and epithelial-mesenchymal transition through the modulation of Slug expression in hepatocellular carcinoma. Sci. Rep.2017, 7, 40464.

    CAS  Google Scholar 

  56. Zhou, X. Y.; Murphy, F. R.; Gehdu, N.; Zhang, J. L.; Iredale, J. P.; Benyon, R. C. Engagement of αvβ3 integrin regulates proliferation and apoptosis of hepatic stellate cells. J. Biol. Chem.2004, 279, 23996–24006.

    CAS  Google Scholar 

  57. Gilbert, M.; Giachelli, C. M.; Stayton, P. S. Biomimetic peptides that engage specific integrin-dependent signaling pathways and bind to calcium phosphate surfaces. J. Biomed. Mater. Res. A2003, 67A, 67–77.

    Google Scholar 

  58. Zhao, R.; Chen, S. Y.; Yuan, B.; Chen, X. N.; Yang, X.; Song, Y. M.; Tang, H.; Yang, X.; Zhu, X. D.; Zhang, X. D. Healing of osteoporotic bone defects by micro-/nano-structured calcium phosphate bioceramics. Nanoscale2019, 11, 2721–2732.

    CAS  Google Scholar 

  59. Lin, J.; Yang, Q. Y.; Wilder, P. T.; Carrier, F.; Weber, D. J. The calcium-binding protein S100B down-regulates p53 and apoptosis in malignant melanoma. J. Biol. Chem.2010, 285, 27487–27498.

    CAS  Google Scholar 

  60. Harpio, R.; Einarsson, R. S100 proteins as cancer biomarkers with focus on S100B in malignant melanoma. Clin. Biochem.2004, 37, 512–518.

    CAS  Google Scholar 

  61. Salama, I.; Malone, P. S.; Mihaimeed, F.; Jones, J. L. A review of the S100 proteins in cancer. Eur. J. Surg. Oncol.2008, 34, 357–364.

    CAS  Google Scholar 

  62. Pujari-Palmer, S.; Chen, S.; Rubino, S.; Weng, H.; Xia, W.; Engqvist, H.; Tang, L. P.; Ott, M. K. In vivo and in vitro evaluation of hydroxyapatite nanoparticle morphology on the acute inflammatory response. Biomaterials2016, 90, 1–11.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key Research and Development Program of China (Nos. 2017YFB0702600 and 2017YFB0702604), Sichuan Science and Technology Innovation Team of China (No. 2019JDTD0008) and “111” Project of China (No. B16033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Yang or Lin Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Tang, J., Wu, H. et al. A systematic assessment of hydroxyapatite nanoparticles used in the treatment of melanoma. Nano Res. 13, 2106–2117 (2020). https://doi.org/10.1007/s12274-020-2817-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2817-6

Keywords

Navigation