Skip to main content
Log in

A unified electrical model based on experimental data to describe electrical transport in carbon nanotube-based materials

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Understanding the electrical transport in carbon nanotube (CNT) materials is one key to reach very high electrical conductivities. All CNT material resistivity (ρ (T)) as function of the temperature are fully apprehended by their reduced activation \(W(T) = \frac{{d\ln (\rho )}}{{d\ln (T)}}\) curves. Up to now, no model accurately fits W(T) curves, thus preventing from precisely describing the CNT material electrical transport. We present a new electrical transport model that perfectly fits all W(T) curves found in the literature and in our own data. CNT material resistivities are modeled by ρ(T)= ρ0(Tα + M(1 + βTγT2)). Our model has few enough parameters (α, M, β, γ) to relate them to the CNT physics. Below 70 K, we experimentally show that CNT material resistivity follows the Luttinger Liquid theory justifying the Tα term in our model. Above 70 K, the polynomial part becomes dominant and depends on the two different CNT fabrication techniques which lead to two very different yarn structures. For yarns made from floating catalyst chemical vapor deposition CNTs, the polynomial is explained by the percolation of metallic CNT walls. Whereas, the polynomial of yarns spun from CNT arrays is explained by the electrical transport in CNT bundles which are the basic building blocks of this type of yarns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lekawa-Raus, A.; Patmore, J.; Kurzepa, L.; Bulmer, J.; Koziol, K. Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Funct. Mater.2014, 24, 3661–3682.

    Article  CAS  Google Scholar 

  2. Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; ter Waarbeek, R. F.; de Jong, J. J.; Hoogerwerf, R. E. et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science2013, 339, 182–186.

    Article  CAS  Google Scholar 

  3. Piraux, L.; Abreu Araujo, F.; Bui, T. N.; Otto, M. J.; Issi, J. P. Two-dimensional quantum transport in highly conductive carbon nanotube fibers. Phys. Rev. B2015, 92, 085428.

    Article  CAS  Google Scholar 

  4. Lekawa-Raus, A.; Walczak, K.; Kozlowski, G.; Wozniak, M.; Hopkins, S. C.; Koziol, K. K. Resistance–temperature dependence in carbon nanotube fibres. Carbon2015, 84, 118–123.

    Article  CAS  Google Scholar 

  5. Tonkikh, A. A.; Tsebro, V. I.; Obraztsova, E. A.; Suenaga, K.; Kataura, H.; Nasibulin, A. G.; Kauppinen, E. I.; Obraztsova, E. D. Metallization of single-wall carbon nanotube thin films induced by gas phase iodination. Carbon2015, 94, 768–774.

    Article  CAS  Google Scholar 

  6. Morelos-Gómez, A.; Fujishige, M.; Magdalena Vega-Díaz, S.; Ito, I.; Fukuyo, T.; Cruz-Silva, R.; Tristán-López, F.; Fujisawa, K.; Fujimori, T.; Futamura, R. et al. High electrical conductivity of double-walled carbon nanotube fibers by hydrogen peroxide treatments. J. Mater. Chem. A2016, 4, 74–82.

    Article  CAS  Google Scholar 

  7. Jakubinek, M. B.; Johnson, M. B.; White, M. A.; Jayasinghe, C.; Li, G.; Cho, W.; Schulz, M. J.; Shanov, V. Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns. Carbon2012, 50, 244–248.

    Article  CAS  Google Scholar 

  8. Foroughi, J.; Spinks, G. M.; Ghorbani, S. R.; Kozlov, M. E.; Safaei, F.; Peleckis, G.; Wallace, G. G.; Baughman, R. H. Preparation and characterization of hybrid conducting polymer–carbon nanotube yarn. Nanoscale2012, 4, 940–945.

    Article  CAS  Google Scholar 

  9. Dini, Y.; Faure-Vincent, J.; Dijon, J. How to overcome the electrical conductivity limitation of carbon nanotube yarns drawn from carbon nanotube arrays. Carbon2019, 144, 301–311.

    Article  CAS  Google Scholar 

  10. Dini, Y.; Rouchon, D.; Faure-Vincent, J.; Dijon, J. Large improvement of CNT yarn electrical conductivity by varying chemical doping and annealing treatment. Carbon2020, 156, 38–48.

    Article  CAS  Google Scholar 

  11. Niven, J. F.; Johnson, M. B.; Juckes, S. M.; White, M. A.; Alvarez, N. T.; Shanov, V. Influence of annealing on thermal and electrical properties of carbon nanotube yarns. Carbon2016, 99, 485–490.

    Article  CAS  Google Scholar 

  12. Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.

    Book  Google Scholar 

  13. Crespi, V. H.; Cohen, M. L.; Rubio, A. In situ band gap engineering of carbon nanotubes. Phys. Rev. Lett.1997, 79, 2093–2096.

    Article  CAS  Google Scholar 

  14. Headrick, R. J.; Tsentalovich, D. E.; Berdegué, J.; Bengio, E. A.; Liberman, L.; Kleinerman, O.; Lucas, M. S.; Talmon, Y.; Pasquali, M. Structure-property relations in carbon nanotube fibers by downscaling solution processing. Adv. Mater.2018, 30, 1704482.

    Article  CAS  Google Scholar 

  15. Sundaram, R. M.; Koziol, K. K. K.; Windle, A. H. Continuous direct spinning of fibers of single-walled carbon nanotubes with metallic chirality. Adv. Mater.2011, 23, 5064–5068.

    Article  CAS  Google Scholar 

  16. Tsentalovich, D. E.; Headrick, R. J.; Mirri, F.; Hao, J. L.; Behabtu, N.; Young, C. C.; Pasquali, M. Influence of carbon nanotube characteristics on macroscopic fiber properties. ACS Appl. Mater. Interfaces2017, 9, 36189–36198.

    Article  CAS  Google Scholar 

  17. Hoecker, C.; Smail, F.; Bajada, M.; Pick, M.; Boies, A. Catalyst nanoparticle growth dynamics and their influence on product morphology in a CVD process for continuous carbon nanotube synthesis. Carbon2016, 96, 116–124.

    Article  CAS  Google Scholar 

  18. Tran, T. Q.; Fan, Z.; Liu, P.; Myint, S. M.; Duong, H. M. Super-strong and highly conductive carbon nanotube ribbons from post-treatment methods. Carbon2016, 99, 407–415.

    Article  CAS  Google Scholar 

  19. Zabrodskiǐ, A. G.; Zinov’eva, K. N. Low-temperature conductivity and metal–insulator transition in compensate n-Ge. Sov. Phys. JETP1984, 59, 425–433.

    Google Scholar 

  20. Jouni, M.; Faure-Vincent, J.; Fedorko, P.; Djurado, D.; Boiteux, G.; Massardier, V. Charge carrier transport and low electrical percolation threshold in multiwalled carbon nanotube polymer nanocomposites. Carbon2014, 76, 10–18.

    Article  CAS  Google Scholar 

  21. Menon, R.; Yoon, C. O.; Moses, D.; Heeger, A. J.; Cao, Y. Transport in polyaniline near the critical regime of the metal-insulator transition. Phys. Rev. B1993, 48, 17685.

    Article  CAS  Google Scholar 

  22. Farka, D.; Coskun, H.; Gasiorowski, J.; Cobet, C.; Hingerl, K.; Uiberlacker, L. M.; Hild, S.; Greunz, T.; Stifter, D.; Sariciftci, N. S. et al. Anderson-localization and the Mott–Ioffe–Regel limit in glassymetallic PEDOT. Adv. Electron. Mater.2017, 3, 1700050.

    Article  CAS  Google Scholar 

  23. Gueye, M. N.; Carella, A.; Massonnet, N.; Yvenou, E.; Brenet, S.; Faure-Vincent, J.; Pouget, S.; Rieutord, F.; Okuno, H.; Benayad, A. et al. Structure and dopant engineering in PEDOT thin films: Practical tools for a dramatic conductivity enhancement. Chem. Mater.2016, 28, 3462–3468.

    Article  CAS  Google Scholar 

  24. Vavro, J.; Kikkawa, J. M.; Fischer, J. E. Metal-insulator transition in doped single-wall carbon nanotubes. Phys. Rev. B2005, 71, 155410.

    Article  CAS  Google Scholar 

  25. Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci.2011, 56, 1178–1271.

    Article  CAS  Google Scholar 

  26. Sheng, P. Fluctuation-induced tunneling conduction in disordered materials. Phys. Rev. B1980, 21, 2180–2195.

    Article  CAS  Google Scholar 

  27. Mott, S. N. F.; Davis, E. A. Electronic Processes in Non-Crystalline Materials; Clarendon Press: Oxford, 1979.

    Google Scholar 

  28. Bommeli, F.; Degiorgi, L.; Wachter, P.; Legeza, Ö.; Jánossy, A.; Oszlányi, G.; Chauvet, O.; Forro, L. Metallic conductivity and metalinsulator transition in (AC60)n (A = K, Rb, and Cs) linear polymer fullerides. Phys. Rev. B1995, 51, 14794.

    Article  CAS  Google Scholar 

  29. Kaiser, A. B.; Düsberg, G.; Roth, S. Heterogeneous model for conduction in carbon nanotubes. Phys. Rev. B1998, 57, 1418–1421.

    Article  CAS  Google Scholar 

  30. Skákalová, V.; Kaiser, A. B.; Woo, Y. S.; Roth, S. Electronic transport in carbon nanotubes: From individual nanotubes to thin and thick networks. Phys. Rev. B2006, 74, 085403.

    Article  CAS  Google Scholar 

  31. Yanagi, K.; Udoguchi, H.; Sagitani, S.; Oshima, Y.; Takenobu, T.; Kataura, H.; Ishida, T.; Matsuda, K.; Maniwa, Y. Transport mechanisms in metallic and semiconducting single-wall carbon nanotube networks. ACS Nano2010, 4, 4027–4032.

    Article  CAS  Google Scholar 

  32. Salvato, M.; Lucci, M.; Ottaviani, I.; Cirillo, M.; Tamburri, E.; Cianchetta, I.; Guglielmotti, V.; Orlanducci, S.; Terranova, M. L.; Pasquali, M. Effect of potassium doping on electrical properties of carbon nanotube fibers. Phys. Rev. B2011, 84, 233406.

    Article  CAS  Google Scholar 

  33. Weller, L.; Smail, F. R.; Elliott, J. A.; Windle, A. H.; Boies, A. M.; Hochgreb, S. Mapping the parameter space for direct-spun carbon nanotube aerogels. Carbon2019, 146, 789–812.

    Article  CAS  Google Scholar 

  34. Barnard, J. S.; Paukner, C.; Koziol, K. K. The role of carbon precursor on carbon nanotube chirality in floating catalyst chemical vapour deposition. Nanoscale2016, 8, 17262–17270.

    Article  CAS  Google Scholar 

  35. Bedewy, M.; Meshot, E. R.; Hart, A. J. Diameter-dependent kinetics of activation and deactivation in carbon nanotube population growth. Carbon2012, 50, 5106–5116.

    Article  CAS  Google Scholar 

  36. Saito, T.; Ohshima, S.; Okazaki, T.; Ohmori, S.; Yumura, M.; Iijima, S. Selective diameter control of single-walled carbon nanotubes in the gas-phase synthesis. J. Nanosci. Nanotechnol.2008, 8, 6153–6157.

    Article  CAS  Google Scholar 

  37. Zhu, H. W.; Xu, C. L.; Wu, D. H.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Direct synthesis of long single-walled carbon nanotube strands. Science2002, 296, 884–886.

    Article  CAS  Google Scholar 

  38. Wang, J. N.; Luo, X. G.; Wu, T.; Chen, Y. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat. Commun.2014, 5, 3848.

    Article  CAS  Google Scholar 

  39. Li, Y. L.; Kinloch, I. A.; Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science2004, 304, 276–278.

    Article  CAS  Google Scholar 

  40. Ericson, L. M.; Fan, H.; Peng, H. Q.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y. H.; Booker, R.; Vavro, J.; Guthy, C. et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science2004, 305, 1447–1450.

    Article  CAS  Google Scholar 

  41. Tans, S. J.; Devoret, M. H.; Dai, H. J.; Thess, A.; Smalley, R. E.; Geerligs, L. J.; Dekker, C. Individual single-wall carbon nanotubes as quantum wires. Nature1997, 386, 474–477.

    Article  CAS  Google Scholar 

  42. Haldane, F. D. M. ‘Luttinger Liquid theory’ of one-dimensional quantum fluids. I. Properties of the luttinger model and their extension to the general 1D interacting spinless fermi gas. J. Phys. C Solid State Phys.1981, 14, 2585–2609. https://doi.org/10.1088/0022-3719/14/19/010.

    Article  Google Scholar 

  43. Bockrath, M.; Cobden, D. H.; Lu, J.; Rinzler, A. G.; Smalley, R. E.; Balents, L.; McEuen, P. L. Luttinger-Liquid behaviour in carbon nanotubes. Nature1999, 397, 598–601.

    Article  CAS  Google Scholar 

  44. Ishii, H.; Kataura, H.; Shiozawa, H.; Yoshioka, H.; Otsubo, H.; Takayama, Y.; Miyahara, T.; Suzuki, S.; Achiba, Y.; Nakatake, M. et al. Direct observation of Tomonaga–Luttinger-Liquid state in carbon nanotubes at low temperatures. Nature2003, 426, 540–544.

    Article  CAS  Google Scholar 

  45. Kim, N. Y.; Recher, P.; Oliver, W. D.; Yamamoto, Y.; Kong, J.; Dai, H. J. Tomonaga-Luttinger-Liquid features in ballistic single-walled carbon nanotubes: Conductance and shot noise. Phys. Rev. Lett.2007, 99, 036802.

    Article  CAS  Google Scholar 

  46. Postma, H. W. C.; de Jonge, M.; Yao, Z.; Dekker, C. Electrical transport through carbon nanotube junctions created by mechanical manipulation. Phys. Rev. B2000, 62, R10653.

    Article  CAS  Google Scholar 

  47. Gao, B.; Komnik, A.; Egger, R.; Glattli, D. C.; Bachtold, A. Evidence for Luttinger-Liquid behavior in crossed metallic single-wall nanotubes. Phys. Rev. Lett.2004, 92, 216804.

    Article  CAS  Google Scholar 

  48. Zhao, S. H.; Wang, S.; Wu, F. Q.; Shi, W.; Utama, I. B.; Lyu, T.; Jiang, L. L.; Su, Y. D.; Wang, S. Q.; Watanabe, K. et al. Correlation of electron tunneling and plasmon propagation in a Luttinger Liquid. Phys. Rev. Lett.2018, 121, 047702.

    Article  CAS  Google Scholar 

  49. Bockrath, M.; Cobden, D. H.; McEuen, P. L.; Chopra, N. G.; Zettl, A.; Thess, A.; Smalley, R. E. Single-electron transport in ropes of carbon nanotubes. Science1997, 275, 1922–1925.

    Article  CAS  Google Scholar 

  50. Hunger, T.; Lengeler, B.; Appenzeller, J. Transport in ropes of carbon nanotubes: Contact barriers and Luttinger Liquid theory. Phys. Rev. B2004, 69, 195406.

    Article  CAS  Google Scholar 

  51. Bae, D. J.; Kim, K. S.; Park, Y. S.; Suh, E. K.; An, K. H.; Moon, J. M.; Lim, S. C.; Park, S. H.; Jeong, Y. H.; Lee, Y. H. Transport phenomena in an anisotropically aligned single-wall carbon nanotube film. Phys. Rev. B2001, 64, 233401.

    Article  CAS  Google Scholar 

  52. Shiraishi, M.; Ata, M. Tomonaga-Luttinger-liquid behavior in singlewalled carbon nanotube networks. Solid State Commun.2003, 127, 215–218.

    Article  CAS  Google Scholar 

  53. Egger, R. Luttinger Liquid behavior in multiwall carbon nanotubes. Phys. Rev. Lett.1999, 83, 5547–5550.

    Article  CAS  Google Scholar 

  54. Barberio, M.; Camarca, M.; Barone, P.; Bonanno, A.; Oliva, A.; Xu, F. Electric resistivity of multi-walled carbon nanotubes at high temperatures. Surf. Sci.2007, 601, 2814–2818.

    Article  CAS  Google Scholar 

  55. Bachtold, A.; de Jonge, M.; Grove-Rasmussen, K.; McEuen, P. L.; Buitelaar, M.; Schönenberger, C. Suppression of tunneling into multiwall carbon nanotubes. Phys. Rev. Lett.2001, 87, 166801.

    Article  CAS  Google Scholar 

  56. Matveev, K. A.; Glazman, L. I. Coulomb blockade of tunneling into a quasi-one-dimensional wire. Phys. Rev. Lett.1993, 70, 990–993.

    Article  CAS  Google Scholar 

  57. Bourlon, B.; Miko, C.; Forró, L.; Glattli, D. C.; Bachtold, A. Determination of the intershell conductance in multiwalled carbon nanotubes. Phys. Rev. Lett.2004, 93, 176806.

    Article  CAS  Google Scholar 

  58. Wei, Y.; Jiang, K. L.; Feng, X. F.; Liu, P.; Liu, L.; Fan, S. S. Comparative studies of multiwalled carbon nanotube sheets before and after shrinking. Phys. Rev. B2007, 76, 045423.

    Article  CAS  Google Scholar 

  59. Pop, E.; Mann, D. A.; Goodson, K. E.; Dai, H. J. Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. J. Appl. Phys.2007, 101, 093710.

    Article  CAS  Google Scholar 

  60. Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; 3rd ed. Wiley: Hoboken, 2007.

    Google Scholar 

  61. Javey, A.; Guo, J.; Paulsson, M.; Wang, Q.; Mann, D.; Lundstrom, M.; Dai, H. J. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett.2004, 92, 106804.

    Article  CAS  Google Scholar 

  62. Park, J. Y.; Rosenblatt, S.; Yaish, Y.; Sazonova, V.; Üstünel, H.; Braig, S.; Arias, T. A.; Brouwer, P. W.; McEuen, P. L. Electron−phonon scattering in metallic single-walled carbon nanotubes. Nano Lett.2004, 4, 517–520.

    Article  CAS  Google Scholar 

  63. Yao, Z.; Kane, C. L.; Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett.2000, 84, 2941–2944.

    Article  CAS  Google Scholar 

  64. Yamamoto, T.; Watanabe, S.; Watanabe, K. Low-temperature thermal conductance of carbon nanotubes. Thin Solid Films2004, 464–465, 350–353.

    Article  CAS  Google Scholar 

  65. Perebeinos, V.; Tersoff, J.; Avouris, P. Electron-phonon interaction and transport in semiconducting carbon nanotubes. Phys. Rev. Lett.2005, 94, 086802.

    Article  CAS  Google Scholar 

  66. Zhou, X. J.; Park, J. Y.; Huang, S. M.; Liu, J.; McEuen, P. L. Band structure, phonon scattering, and the performance limit of singlewalled carbon nanotube transistors. Phys. Rev. Lett.2005, 95, 146805.

    Article  CAS  Google Scholar 

  67. Akinwande, D.; Nishi, Y.; Wong, H. S. P. An analytical derivation of the density of states, effective mass, and carrier density for achiral carbon nanotubes. IEEE Trans. Electron Devices2008, 55, 289–297.

    Article  CAS  Google Scholar 

  68. Davis, V. A.; Parra-Vasquez, A. N. G.; Green, M. J.; Rai, P. K.; Behabtu, N.; Prieto, V.; Booker, R. D.; Schmidt, J.; Kesselman, E.; Zhou, W. et al. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat. Nanotechnol.2009, 4, 830–834.

    Article  CAS  Google Scholar 

  69. Xu, F. B.; Sadrzadeh, A.; Xu, Z. P.; Yakobson, B. I. Can carbon nanotube fibers achieve the ultimate conductivity?—Coupled-mode analysis for electron transport through the carbon nanotube contact. J. Appl. Phys.2013, 114, 063714.

    Article  CAS  Google Scholar 

  70. Xu, F. B.; Xu, Z. P.; Yakobson, B. I. Site-percolation threshold of carbon nanotube fibers—Fast inspection of percolation with Markov Stochastic theory. Phys. A Stat. Mech. Its Appl.2014, 407, 341–349.

    Article  CAS  Google Scholar 

  71. Yao, Z.; Postma, H. W. C.; Balents, L.; Dekker, C. Carbon nanotube intramolecular junctions. Nature1999, 402, 273–276.

    Article  CAS  Google Scholar 

  72. Bedewy, M.; Meshot, E. R.; Reinker, M. J.; Hart, A. J. Population growth dynamics of carbon nanotubes. ACS Nano2011, 5, 8974–8989.

    Article  CAS  Google Scholar 

  73. Tunney, M. A.; Cooper, N. R. Effects of disorder and momentum relaxation on the intertube transport of incommensurate carbon nanotube ropes and multiwall nanotubes. Phys. Rev. B2006, 74, 075406.

    Article  CAS  Google Scholar 

  74. Agrawal, S.; Raghuveer, M. S.; Li, H.; Ramanath, G. Defect-induced electrical conductivity increase in individual multiwalled carbon nanotubes. Appl. Phys. Lett.2007, 90, 193104.

    Article  CAS  Google Scholar 

  75. Zhong, G. F.; Warner, J. H.; Fouquet, M.; Robertson, A. W.; Chen, B. G.; Robertson, J. Growth of ultrahigh density single-walled carbon nanotube forests by improved catalyst design. ACS Nano2012, 6, 2893–2903.

    Article  CAS  Google Scholar 

  76. White, C. T.; Todorov, T. N. Carbon nanotubes as long ballistic conductors. Nature1998, 393, 240–242.

    Article  CAS  Google Scholar 

  77. Li, H. J.; Lu, W. G.; Li, J. J.; Bai, X. D.; Gu, C. Z. Multichannel ballistic transport in multiwall carbon nanotubes. Phys. Rev. Lett.2005, 95, 086601.

    Article  CAS  Google Scholar 

  78. Liang, J.; Chen, R. M.; Ramos, R.; Lee, J.; Okuno, H.; Kalita, D.; Georgiev, V.; Berrada, S.; Sadi, T.; Uhlig, B. et al. Investigation of Pt-salt-doped-standalone- multiwall carbon nanotubes for on-chip interconnect applications. IEEE Trans. Electron Devices2019, 66, 2346–2352.

    Article  CAS  Google Scholar 

  79. Liang, J.; Ramos, R.; Dijon, J.; Okuno, H.; Kalita, D.; Renaud, D.; Lee, J.; Georgiev, V. P.; Berrada, S.; Sadi, T. et al. A physics-based investigation of Pt-salt doped carbon nanotubes for local interconnects. In Proceedings of 2017 IEEE International Electron Devices Meeting, San Francisco, USA, 2017, pp 35.5.1–35.5.4.

    Chapter  Google Scholar 

  80. Kajiura, H.; Nandyala, A.; Bezryadin, A. Quasi-ballistic electron transport in as-produced and annealed multiwall carbon nanotubes. Carbon2005, 43, 1317–1319.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Faure-Vincent.

Electronic Supplementary Material

12274_2020_2803_MOESM1_ESM.pdf

A unified electrical model based on experimental data to describe electrical transport in carbon nanotube-based materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dini, Y., Faure-Vincent, J. & Dijon, J. A unified electrical model based on experimental data to describe electrical transport in carbon nanotube-based materials. Nano Res. 13, 1764–1779 (2020). https://doi.org/10.1007/s12274-020-2803-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2803-z

Keywords

Navigation