Skip to main content
Log in

Fabrication of oxygen-doped MoSe2 hierarchical nanosheets for highly sensitive and selective detection of trace trimethylamine at room temperature in air

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Intelligent gas sensors based on the layered transition metal dichalcogenides (TMDs) have attracted great interest in the field of gas sensing due to their multiple active sites, fast electron, mass transfer capability and large surface-to-volume ratio. However, conventional TMDs-based sensors typically work at elevated temperature in inert atmosphere, which would largely limit the corresponding practical applications. Herein, novel oxygen-doped MoSe2 hierarchical nanostructures composed of ultrathin nanosheets with large specific surface area have been designed and generated typically at 200 °C in air for fast and facile gas sensing of trimethylamine (TMA), effectively. Benefited from the gas-accessible hierarchical morphology and high surface area with abundant nanochannels, highly sensitive and selective detection of trace TMA has been achieved under ambient condition, and as detected the theoretical limit of detection (LOD) is 8 ppb, which is the lowest for TMA detection under ambient condition among the reported studies. The mechanism of oxygen doping on the improved gas-sensing performance has been investigated, revealing that the oxygen doping could greatly optimize the electronic structure, thus regulate the Fermi level of MoSe2 as well as the affinity between TMA molecule and sensor surface. It is expected that the oxygen doping strategy developed for the highly efficient gas sensors based on TMDs in present work may also be applicable to other types of gas-sensing semiconductors, which could open up a new direction for the rational design of high-performance gas sensors working under ambient condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van den Broek, J.; Abegg, S.; Pratsinis, S. E.; Güntner, A. T. Highly selective detection of methanol over ethanol by a handheld gas sensor. Nat. Commun. 2019, 10, 4220.

    CAS  Google Scholar 

  2. Ni, Y. X.; Le, K.; Du, W. J.; Fang, W. J.; Chen, X.; Liu, W.; Wang, Y.; Liu, J. R. High response to nitrogen dioxide derived from antimony peroxide modified tin oxide porous nanocomposites serving as gas sensing material. Sens. Actuators B Chem. 2017, 247, 216–223.

    CAS  Google Scholar 

  3. Wang, P.; Zheng, Z. K.; Cheng, X. L.; Sui, L. L.; Gao, S.; Zhang, X. F.; Xu, Y. M.; Zhao, H.; Huo, L. H. Ionic liquid-assisted synthesis of α-Fe2O3 mesoporous nanorod arrays and their excellent trimethylamine gas-sensing properties for monitoring fish freshness. J. Mater. Chem. A2017, 5, 19846–19856.

    CAS  Google Scholar 

  4. Cho, Y. H.; Ko, Y. N.; Kang, Y. C.; Kim, I. D.; Lee, J. H. Ultraselective and ultrasensitive detection of trimethylamine using MoO3 nanoplates prepared by ultrasonic spray pyrolysis. Sens. Actuators B Chem. 2014, 195, 189–196.

    CAS  Google Scholar 

  5. Lee, S. H.; Lim, J. H.; Park, J.; Hong, S.; Park, T. H. Bioelectronic nose combined with a microfluidic system for the detection of gaseous trimethylamine. Biosens. Bioelectron. 2015, 71, 179–185.

    CAS  Google Scholar 

  6. Chen, W.; Deng, F. F.; Xu, M.; Wang, J.; Wei, Z. B.; Wang, Y. W. GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations. Sens. Actuators B Chem. 2018, 273, 498–504.

    CAS  Google Scholar 

  7. Liu, T.; Liu, J. Y.; Liu, Q.; Song, D. L.; Zhang, H. S.; Zhang, H. G.; Wang, J. Synthesis, characterization and enhanced gas sensing performance of porous ZnCo2O4 nano/microspheres. Nanoscale. 2015, 7, 19714–19721.

    CAS  Google Scholar 

  8. Ayad, M. M.; Torad, N. L. Quartz crystal microbalance sensor for detection of aliphatic amines vapours. Sens. Actuators B Chem. 2010, 147, 481–487.

    CAS  Google Scholar 

  9. Zhang, F. D.; Dong, X.; Cheng, X. L.; Xu, Y. M.; Zhang, X. F.; Huo, L. H. Enhanced gas-sensing properties for trimethylamine at low temperature based on MoO3/Bi2Mo3O12 hollow microspheres. ACS Appl. Mater. Interfaces2019, 11, 11755–11762.

    CAS  Google Scholar 

  10. Li, F.; Zhang, T.; Gao, X.; Wang, R.; Li, B. H. Coaxial electrospinning heterojunction SnO2/Au-doped In2O3 core-shell nanofibers for acetone gas sensor. Sens. Actuators B Chem. 2017, 252, 822–830.

    CAS  Google Scholar 

  11. Seguin, L.; Figlarz, M.; Cavagnat, R.; Lassègues, J. C. Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3·xH2O molybdenum trioxide hydrates. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995, 51, 1323–1344.

    Google Scholar 

  12. Yang, S.; Liu, Y. L.; Chen, W.; Jin, W.; Zhou, J.; Zhang, H.; Zakharova, G. S. High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas. Sens. Actuators B Chem. 2016, 226, 478–485.

    CAS  Google Scholar 

  13. Kim, K. M.; Choi, K. I.; Jeong, H. M.; Kim, H. J.; Kim, H. R.; Lee, J. H. Highly sensitive and selective trimethylamine sensors using Ru-doped SnO2 hollow spheres. Sens. Actuators B Chem. 2012, 166–167, 733–738.

    Google Scholar 

  14. Jin, H. T.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

    CAS  Google Scholar 

  15. Huang, C. S.; Li, Y. J.; Wang, N.; Xue, Y. R.; Zuo, Z. C.; Liu, H. B.; Li, Y. L. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744–7803.

    CAS  Google Scholar 

  16. Yang, Y. B.; Yang, X. D.; Zou, X. M.; Wu, S. T.; Wan, D.; Cao, A. Y.; Liao, L.; Yuan, Q.; Duan, X. F. Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors. Adv. Funct. Mater. 2017, 27, 1604096.

    Google Scholar 

  17. Zhang, X.; Lai, Z. C.; Ma, Q. L.; Zhang, H. Novel structured transition metal dichalcogenide nanosheets. Chem. Soc. Rev. 2018, 47, 3301–3338.

    CAS  Google Scholar 

  18. Wang, S. Z.; McGuirk, C. M.; d’Aquino, A.; Mason, J. A.; Mirkin, C. A. Metal–organic framework nanoparticles. Adv. Mater. 2018, 30, 1800202.

    Google Scholar 

  19. Pan, Q. C.; Zhang, Q. B.; Zheng, F. H.; Liu, Y. Z.; Li, Y. P.; Ou, X.; Xiong, X. H.; Yang, C. H.; Liu, M. L. Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries. ACS Nano2018, 12, 12578–12586.

    CAS  Google Scholar 

  20. Wang, Z. L.; Molina-Sánchez, A.; Altmann, P.; Sangalli, D.; De Fazio, D.; Soavi, G.; Sassi, U.; Bottegoni, F.; Ciccacci, F.; Finazzi, M. et al. Intravalley spin–flip relaxation dynamics in single-layer WS2. Nano Lett. 2018, 18, 6882–6891.

    CAS  Google Scholar 

  21. Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409–6455.

    CAS  Google Scholar 

  22. Zhang, D. Z.; Wu, J. F.; Li, P.; Cao, Y. H. Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: An experimental and density functional theory investigation. J. Mater. Chem. A2017, 5, 20666–20677.

    CAS  Google Scholar 

  23. Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668–673.

    CAS  Google Scholar 

  24. Baek, J.; Yin, D. M.; Liu, N.; Omkaram, I.; Jung, C.; Im, H.; Hong, S.; Kim, S. M.; Hong, Y. K.; Hur, J. et al. A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe2 films. Nano Res. 2017, 10, 1861–1871.

    CAS  Google Scholar 

  25. Ikram, M.; Liu, L. J.; Liu, Y.; Ma, L. F.; Lv, H.; Ullah, M.; He, L.; Wu, H. Y.; Wang, R. H.; Shi, K. Y. Fabrication and characterization of a high-surface area MoS2@WS2 heterojunction for the ultrasensitive NO2 detection at room temperature. J. Mater. Chem. A. 2019, 7, 14602–14612.

    CAS  Google Scholar 

  26. Koo, W. T.; Cha, J. H.; Jung, J. W.; Choi, S. J.; Jang, J. S.; Kim, D. H.; Kim, I. D. Few-layered WS2 nanoplates confined in Co, N-doped hollow carbon nanocages: Abundant WS2 edges for highly sensitive gas sensors. Adv. Funct. Mater. 2018, 28, 1802575.

    Google Scholar 

  27. Sarkar, D.; Xie, X. J.; Kang, J. H.; Zhang, H. J.; Liu, W.; Navarrete, J.; Moskovits, M.; Banerjee, K. Functionalization of transition metal dichalcogenides with metallic nanoparticles: Implications for doping and gas-sensing. Nano Lett. 2015, 15, 2852–2862.

    CAS  Google Scholar 

  28. Zhang, D. Z.; Sun, Y. E.; Jiang, C. X.; Yao, Y.; Wang, D. Y.; Zhang, Y. Room-temperature highly sensitive CO gas sensor based on Ag-loaded zinc oxide/molybdenum disulfide ternary nanocomposite and its sensing properties. Sens. Actuators B Chem.2017, 253, 1120–1128.

    CAS  Google Scholar 

  29. Kuru, C.; Choi, C.; Kargar, A.; Choi, D.; Kim, Y. J.; Liu, C. H.; Yavuz, S.; Jin, S. MoS2 nanosheet–Pd nanoparticle composite for highly sensitive room temperature detection of hydrogen. Adv. Sci. 2015, 2, 1500004.

    Google Scholar 

  30. Su, S.; Sun, H. F.; Xu, F.; Yuwen, L. H.; Wang, L. H. Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using gold nanoparticles-decorated MoS2 nanosheets modified electrode. Electroanalysis2013, 25, 2523–2529.

    CAS  Google Scholar 

  31. Zou, X. M.; Wang, J. L.; Liu, X. Q.; Wang, C. L.; Jiang, Y.; Wang, Y.; Xiao, X. H.; Ho, J. C.; Li, J. C.; Jiang, C. Z. et al. Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors. Nano Lett. 2013, 13, 3287–3292.

    CAS  Google Scholar 

  32. Yang, C. Y.; Wang, Z.; Lin, T. Q.; Yin, H.; Lü, X. J.; Wan, D. Y.; Xu, T.; Zheng, C.; Lin, J. H.; Huang, F. Q. et al. Core-shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J. Am. Chem. Soc. 2013, 135, 17831–17838.

    CAS  Google Scholar 

  33. Gong, J.; Antonietti, M.; Yuan, J. J. Poly(ionic liquid)-derived carbon with site-specific N-doping and biphasic heterojunction for enhanced CO2 capture and sensing. Angew. Chem., Int. Ed.2017, 56, 7557–7563.

    CAS  Google Scholar 

  34. Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

    CAS  Google Scholar 

  35. Zheng, Z. H.; Cong, S.; Gong, W. B.; Xuan, J. N.; Li, G. H.; Lu, W. B.; Geng, F. X.; Zhao, Z. G. Semiconductor SERS enhancement enabled by oxygen incorporation. Nat. Commun. 2017, 8, 1993.

    Google Scholar 

  36. Zhu, H.; McDonnell, S.; Qin, X. Y.; Azcatl, A.; Cheng, L. X.; Addou, R.; Kim, J.; Ye, P. D.; Wallace, R. M. Al2O3 on black phosphorus by atomic layer deposition: An in situ interface study. ACS Appl. Mater. Interfaces2015, 7, 13038–13043.

    CAS  Google Scholar 

  37. Zhao, J. Y.; Zhang, J. M. Modulating the band gap of the FeS2 by O and Se doping. J. Phys. Chem. C2017, 121, 19334–19340.

    CAS  Google Scholar 

  38. Lu, Q.; Zhao, Q.; Yang, T. Y.; Zhai, C. B.; Wang, D. X.; Zhang, M. Z. Preparation of boron nitride nanoparticles with oxygen doping and a study of their room-temperature ferromagnetism. ACS Appl. Mater. Interfaces2018, 10, 12947–12953.

    CAS  Google Scholar 

  39. Zhou, X. L.; Jiang, J.; Ding, T.; Zhang, J. J.; Pan, B. C.; Zuo, J.; Yang, Q. Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe2x nanosheets for high-performance hydrogen evolution. Nanoscale2014, 6, 11046–11051.

    CAS  Google Scholar 

  40. Meng, F. L.; Hou, N. N.; Jin, Z.; Sun, B.; Li, W. Q.; Xiao, X. H.; Wang, C.; Li, M. Q.; Liu, J. H. Sub-ppb detection of acetone using Au-modified flower-like hierarchical ZnO structures Sens. Actuators B Chem. 2015, 219, 209–

    CAS  Google Scholar 

  41. Sun, Y.; Meng, J.; Ju, H. X.; Zhu, J. F.; Li, Q. X.; Yang, Q. Electrochemical activity of 1T′ structured rhenium selenide nanosheets via electronic structural modulation from selenium-vacancy generation. J. Mater. Chem. A2018, 6, 22526–22533.

    CAS  Google Scholar 

  42. Jariwala, B.; Voiry, D.; Jindal, A.; Chalke, B. A.; Bapat, R.; Thamizhavel, A.; Chhowalla, M.; Deshmukh, M.; Bhattacharya, A. Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem. Mater. 2016, 28, 3352–3359.

    CAS  Google Scholar 

  43. Ji, W. X.; Shen, R.; Yang, R.; Yu, G. Y.; Guo, X. F.; Peng, L. M.; Ding, W. P. Partially nitrided molybdenum trioxide with promoted performance as an anode material for lithium-ion batteries. J. Mater. Chem. A2014, 2, 699–704.

    CAS  Google Scholar 

  44. Fan, Y. M.; Zhuo, Y. Q.; Li, L. L. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules. Appl. Surf. Sci. 2017, 420, 465–471.

    CAS  Google Scholar 

  45. Rim, Y. S.; Kim, D. L.; Jeong, W. H.; Kim, H. J. Effect of Zr addition on ZnSnO thin-film transistors using a solution process. Appl. Phys. Lett. 2010, 97, 233502.

    Google Scholar 

  46. Huang, G. M.; Duan, L.; Dong, G. F.; Zhang, D. Q.; Qiu, Y. Highmobility solution-processed tin oxide thin-film transistors with high-κalumina dielectric working in enhancement mode. ACS Appl. Mater. Interfaces2014, 6, 20786–20794.

    CAS  Google Scholar 

  47. Chen, X.; Guo, Z.; Xu, W. H.; Yao, H. B.; Li, M. Q.; Liu, J. H.; Huang, X. J.; Yu, S. H. Templating synthesis of SnO2 nanotubes loaded with Ag2O nanoparticles and their enhanced gas sensing properties. Adv. Funct. Mater. 2011, 21, 2049–2056.

    CAS  Google Scholar 

  48. Cao, D. F.; Ye, K.; Moses, O. A.; Xu, W. J.; Liu, D. B.; Song, P.; Wu, C. Q.; Wang, C. D.; Ding, S. Q.; Chen, S. M. et al. Engineering the in-plane structure of metallic phase molybdenum disulfide via Co and O dopants toward efficient alkaline hydrogen evolution. ACS Nano2019, 13, 11733–11740.

    CAS  Google Scholar 

  49. Pavelko, R. G.; Yuasa, M.; Kida, T.; Shimanoe, K.; Yamazoe, N. Impurity level in SnO2 materials and its impact on gas sensing properties. Sens. Actuators B Chem. 2015, 210, 719–725.

    CAS  Google Scholar 

  50. Kannan, P. K.; Late, D. J.; Morgan, H.; Rout, C. S. Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale2015, 7, 13293–13312.

    CAS  Google Scholar 

  51. Baber, N. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use (ICH). Br. J. Clin. Pharmacol.1994, 37, 401–404.

    CAS  Google Scholar 

  52. Kauffman, D. R.; Star, A. Carbon nanotube gas and vapor sensors. Angew. Chem., Int. Ed.2008, 47, 6550–6570.

    CAS  Google Scholar 

  53. D’Arienzo, M.; Cristofori, D.; Scotti, R.; Morazzoni, F. New insights into the SnO2 sensing mechanism based on the properties of shape controlled tin oxide nanoparticles. Chem. Mater. 2013, 25, 3675–3686.

    Google Scholar 

  54. Cui, S. M.; Wen, Z. H.; Huang, X. K.; Chang, J. B.; Chen, J. H. Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air. Small2015, 11, 2305–2313.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. U1932150 and 21571166), Anhui Provincial Natural Science Foundation (No. 1908085QB72) and the Fundamental Research Funds for the Central Universities (No. WK2060190099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yang.

Electronic Supplementary Material

12274_2020_2796_MOESM1_ESM.pdf

Fabrication of oxygen-doped MoSe2 hierarchical nanosheets for highly sensitive and selective detection of trace trimethylamine at room temperature in air

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, N., Sun, Q., Yang, J. et al. Fabrication of oxygen-doped MoSe2 hierarchical nanosheets for highly sensitive and selective detection of trace trimethylamine at room temperature in air. Nano Res. 13, 1704–1712 (2020). https://doi.org/10.1007/s12274-020-2796-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2796-7

Keywords

Navigation