Skip to main content
Log in

A HfC nanowire point electron source with oxycarbide surface of lower work function for high-brightness and stable field-emission

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electric field-induced point electron source is highly demanded for microscopy, spectroscopy, lithography, X-ray tubes, microwave devices, and data displays. However, the instability in emission current and requirement of ultrahigh vacuum have often limited its extensive applications. Herewith we report a single-crystalline HfC nanowire with oxycarbide emission surface for stable electron emission at 50 nA with fluctuations less than 1% in a vacuum of 4 × 10−7 Pa. The emitter has a low work function of 2.5 eV measured by the field emission Fowler-Nordheim curve and it is in good agreement with density functional theory (DFT) calculations. The energy spread is in a range of 0.21–0.26 eV with a corresponding reduced brightness 1.95 × 1011−3.81 × 1011 A·m−2·sr−1·V−1. The HfC nanowire with oxycarbide emission surface is a qualified candidate for the next-generation electron source with high brightness, large current, and low energy spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crewe, A. V.; Eggenberger, D. N.; Wall, J.; Welter, L. M., Electron gun using a field emission source. Rev. Sci. Instrum., 1968, 39, 576–583.

    Article  Google Scholar 

  2. de Heer, W. A.; Châtelain, A.; Ugarte, D., A carbon nanotube field-emission electron source. Science, 1995, 270, 1179–1180.

    Article  CAS  Google Scholar 

  3. Houdellier, F.; de Knoop, L.; Gatel, C.; Masseboeuf, A.; Mamishin, S.; Taniguchi, Y.; Delmas, M.; Monthioux, M.; Hÿtch, M. J.; Snoeck, E., Development of TEM and SEM high brightness electron guns using cold-field emission from a carbon nanotip. Ultramicroscopy, 2015, 151, 107–115.

    Article  CAS  Google Scholar 

  4. Guo, G. X.; Tokunaga, K.; Yin, E.; Tsai, F. C.; Brodie, A. D.; Parker, N. W., Use of microfabricated cold field emitters in sub-100 nm maskless lithography. J. Vac. Sci. Technol. B, 2001, 19, 862–865.

    Article  CAS  Google Scholar 

  5. Zhang, J.; Yang, G.; Cheng, Y.; Gao, B.; Qiu, Q.; Lee, Y. Z.; Lu, J. P.; Zhou, O., Stationary scanning X-ray source based on carbon nanotube field emitters. Appl. Phys. Lett., 2005, 86, 184104.

    Article  Google Scholar 

  6. Teo, K. B. K.; Minoux, E.; Hudanski, L.; Peauger, F.; Schnell, J. P.; Gangloff, L.; Legagneux, P.; Dieumegard, D.; Amaratunga, G. A. J.; Milne, W. I., Microwave devices: Carbon nanotubes as cold cathodes. Nature, 2005, 437, 968.

    Article  CAS  Google Scholar 

  7. Chen, J.; Dai, Y. Y.; Luo, J.; Li, Z. L.; Deng, S. Z.; She, J. C.; Xu, N. S., Field emission display device structure based on double-gate driving principle for achieving high brightness using a variety of field emission nanoemitters. Appl. Phys. Lett., 2007, 90, 253105.

    Article  Google Scholar 

  8. Xu, N. S.; Huq, S. E., Novel cold cathode materials and applications. Mat. Sci. Eng. R, 2005, 48, 47–189.

    Article  Google Scholar 

  9. Schwind, G. A.; Magera, G.; Swanson, L. W., Comparison of parameters for Schottky and cold field emission sources. J. Vac. Sci. Technol. B, 2006, 24, 2897–2901.

    Article  CAS  Google Scholar 

  10. Swanson, L. W.; Schwind, G. A., A review of the cold-field electron cathode. Adv. Imag. Elec. Phys., 2009, 159, 63–100.

    Article  CAS  Google Scholar 

  11. Kasuya, K.; Katagiri, S.; Ohshima, T.; Kokubo, S., Stabilization of a tungsten <310> cold field emitter. J. Vac. Sci. Technol. B, 2010, 28, L55–L60.

    Article  CAS  Google Scholar 

  12. Andrievskii, R. A.; Strel’nikova, N. S.; Poltoratskii, N. I.; Kharkhardin, E. D.; Smirnov, V. S., Melting point in systems ZrC-HfC, TaC-ZrC, TaC-HfC. Powder Metall. Met. Ceram, 1967, 6, 65–67.

    Article  Google Scholar 

  13. Williams, W. S., Electrical properties of hard materials. Int. J. Refract. Met. Hard Mat., 1999, 17, 21–26.

    Article  CAS  Google Scholar 

  14. Opeka, M. M.; Talmy, I. G.; Wuchina, E. J.; Zaykoski, J. A.; Causey, S. J., Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc., 1999, 19, 2405–2414.

    Article  CAS  Google Scholar 

  15. Yu, M. L.; Hussey, B. W.; Kratschmer, E.; Chang, T. H. P., Improved emission stability of carburized HfC< 100> and ultrasharp tungsten field emitters. J. Vac. Sci. Technol. B, 1995, 13, 2436–2440.

    Article  Google Scholar 

  16. Kagarice, K. J.; Magera, G. G.; Pollard, S. D.; Mackie, W. A., Cold field emission from HfC (310). J. Vac. Sci. Technol. B, 2008, 26, 868–871.

    Article  CAS  Google Scholar 

  17. Liu, W.; Zheng, W. T.; Jiang, Q., First-principles study of the surface energy and work function of III-V semiconductor compounds. Phys. Rev. B, 2007, 75, 235322.

    Article  Google Scholar 

  18. Mackie, W. A.; Morrissey, J. L.; Hinrichs, C. H.; Davis, P. R., Field emission from hafnium carbide. J. Vac. Sci. Technol. A, 1992, 10, 2852–2856.

    Article  CAS  Google Scholar 

  19. Otani, S.; Tanaka, T., Preparation of HfC single crystals by a floating zone technique. J. Cryst. Growth, 1981, 51, 381–386.

    Article  CAS  Google Scholar 

  20. Rogl, P.; Naik, S. K.; Rudy, E., A constitutional diagram of the system TiC-HfC-WC. Monatsh. Chem., 1977, 108, 1189–1211.

    Article  CAS  Google Scholar 

  21. Yuan, J. S.; Zhang, H.; Tang, J.; Shinya, N.; Nakajima, K.; Qin, L-C., Synthesis and characterization of single crystalline hafnium carbide nanowires. J. Am. Ceram. Soc., 2012, 95, 2352–2356.

    Article  CAS  Google Scholar 

  22. Fowler, R. H.; Nordheim, L., Electron emission in intense electric fields. Proc. R. Soc. Lond. A, 1928, 119, 173–181.

    Article  CAS  Google Scholar 

  23. Zhang, H.; Tang, J.; Zhang, Q.; Zhao, G.; Yang, G.; Zhang, J.; Zhou, O.; Qin, L-C., Field emission of electrons from single LaB6 nanowires. Adv. Mater., 2006, 18, 87–91.

    Article  CAS  Google Scholar 

  24. Swanson, L. W.; Martin, N. A., Field electron cathode stability studies: Zirconium/tungsten thermal-field cathode. J. Appl. Phys., 1975, 46, 2029–2050.

    Article  CAS  Google Scholar 

  25. Bronsgeest, M. S.; Barth, J. E.; Swanson, L. W.; Kruit, P., Probe current, probe size, and the practical brightness for probe forming systems. J. Vac. Sci. Technol. B, 2008, 26, 949–955.

    Article  CAS  Google Scholar 

  26. Young, R. D., Theoretical total-energy distribution of field-emitted electrons. Phys. Rev., 1959, 113, 110–114.

    Article  CAS  Google Scholar 

  27. Gambardella, P.; Šljivančanin, Ž.; Hammer, B.; Blanc, M.; Kuhnke, K.; Kern, K., Oxygen dissociation at Pt steps. Phys. Rev. Lett., 2001, 87, 056103.

    Article  CAS  Google Scholar 

  28. Dahl, S.; Logadottir, A.; Egeberg, R. C.; Larsen, J. H.; Chorkendorff, I.; Törnqvist, E.; Nerskov, J. K., Role of steps in N2 activation on Ru(0001). Phys. Rev. Lett., 1999, 83, 1814–1817.

    Article  Google Scholar 

  29. Snijders, P. C.; Rogge, S.; González, C.; Pérez, R.; Ortega, J.; Flores, F.; Weitering, H. H., Ga-induced atom wire formation and passivation of stepped Si (112). Phys. Rev. B, 2005, 72, 125343.

    Article  Google Scholar 

  30. Shimada, S.; Inagaki, M.; Matsui, K., Oxidation kinetics of hafnium carbide in the temperature range of 480° to 600° C. J. Am. Ceram. Soc., 1992, 75, 2671–2678.

    Article  CAS  Google Scholar 

  31. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter, 2009, 27, 395502.

    Google Scholar 

  32. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 1990, 41, 7892–7895.

    Article  CAS  Google Scholar 

  33. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  34. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13, 5188–5192.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. K. Hono for helpful discussions on the FIM and atom probe results. This work was supported partially by the NIMS-DENKA Centre of Excellence for Next Generation Materials. A part of this work was also supported by NIMS Microstructural Characterization Platform as a program of “Nanotechnology Platform” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Tang or Lu-Chang Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Tang, J., Chiu, Tw. et al. A HfC nanowire point electron source with oxycarbide surface of lower work function for high-brightness and stable field-emission. Nano Res. 13, 1620–1626 (2020). https://doi.org/10.1007/s12274-020-2782-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2782-0

Keywords

Navigation