Skip to main content
Log in

Multi-modal anti-counterfeiting and encryption enabled through silicon-based materials featuring pH-responsive fluorescence and room-temperature phosphorescence

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Optical silicon (Si)-based materials are highly attractive due to their widespread applications ranging from electronics to biomedicine. It is worth noting that while extensive efforts have been devoted to developing fluorescent Si-based structures, there currently exist no examples of Si-based materials featuring phosphorescence emission, severely limiting Si-based wide-ranging optical applications. To address this critical issue, we herein introduce a kind of Si-based material, in which metal-organic frameworks (MOFs) are in-situ growing on the surface of Si nanoparticles (SiNPs) assisted by microwave irradiation. Of particular significance, the resultant materials, i.e., MOFs-encapsulated SiNPs (MOFs@SiNPs) could exhibit pH-responsive fluorescence, whose maximum emission wavelength is red-shifted from 442 to 592 nm when the pH increases from 2 to 13. More importantly, distinct room-temperature phosphorescence (maximum emission wavelength: 505 nm) could be observed in this system, with long lifetime of 215 ms. Taking advantages of above-mentioned unique optical properties, the MOFs@SiNPs are further employed as high-quality anti-counterfeiting inks for advanced encryption. In comparison to conventional fluorescence anti-counterfeiting techniques (static fluorescence outputs are generally used, thus being easily duplicated and leading to counterfeiting risk), pH-responsive fluorescence and room-temperature phosphorescence of the resultant MOFs@SiNPs-based ink could offer advanced multi-modal security, which is therefore capable of realizing higher-level information security against counterfeiting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jurbergs, D.; Rogojina, E.; Mangolini, L.; Kortshagen, U. Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl. Phys. Lett.2006, 88, 233116.

    Article  CAS  Google Scholar 

  2. Li, Q.; He, Y.; Chang, J.; Wang, L.; Chen, H. Z.; Tan, Y. W.; Wang, H. Y.; Shao, Z. Z. Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature. J. Am. Chem. Soc.2013, 135, 14924–14927.

    Article  CAS  Google Scholar 

  3. Greben, M.; Khoroshyy, P.; Liu, X. K.; Pi, X. D.; Valenta, J. Fully radiative relaxation of silicon nanocrystals in colloidal ensemble revealed by advanced treatment of decay kinetics. J. Appl. Phys.2017, 122, 034304.

    Article  CAS  Google Scholar 

  4. Marinins, A.; Yang, Z. Y.; Chen, H. Z.; Linnros, J.; Veinot, J. G. C.; Popov, S.; Sychugov, I. Photostable polymer/Si nanocrystal bulk hybrids with tunable photoluminescence. ACS Photonics2016, 3, 1575–1580.

    Article  CAS  Google Scholar 

  5. Joo, J.; Defforge, T.; Loni, A.; Kim, D.; Li, Z. Y.; Sailor, M. J.; Gautier, G.; Canham, L. T. Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying. Appl. Phys. Lett.2016, 108, 153111.

    Article  CAS  Google Scholar 

  6. Shen, X. B.; Song, B.; Fang, B.; Yuan, X.; Li, Y. Y.; Wang, S. Y.; Ji, S. J.; He, Y. Solvent polarity-induced photoluminescence enhancement (SPIPE): A method enables several-fold increase in quantum yield of silicon nanoparticles. Nano Res.2019, 12, 315–322.

    Article  CAS  Google Scholar 

  7. Benezra, M.; Penate-Medina, O.; Zanzonico, P. B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S. et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest.2011, 121, 2768–2780.

    Article  CAS  Google Scholar 

  8. Phillips, E.; Penate-Medina, O.; Zanzonico, P. B.; Carvajal, R. D.; Mohan, P.; Ye, Y. P.; Humm, J.; Gönen, M.; Kalaigian, H.; Schöder, H. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med.2014, 6, 260ra149.

    Article  CAS  Google Scholar 

  9. Arppe, R.; Sørensen, T. J. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat. Rev. Chem.2017, 1, 0031.

    Article  CAS  Google Scholar 

  10. Kumar, P.; Singh, S.; Gupta, B. K. Future prospects of luminescent nanomaterial based security inks: From synthesis to anti-counterfeiting applications. Nanoscale2016, 8, 14297–14340.

    Article  CAS  Google Scholar 

  11. Park, K.; Park, M.; Jang, H. S.; Park, J. H.; Kim, J.; Cho, Y.; Han, I. K.; Byun, D.; Ko, H. Highly secure plasmonic encryption keys combined with upconversion luminescence nanocrystals. Adv. Funct. Mater.2018, 28, 1800369.

    Article  CAS  Google Scholar 

  12. Jin, L.; Dong, Z. G.; Mei, S. T.; Yu, Y. F.; Wei, Z.; Pan, Z. Y.; Rezaei, S. D.; Li, X. P.; Kuznetsov, A. I.; Kivshar, Y. S. et al. Noninterleaved metasurface for (26-1) spin- and wavelength-encoded holograms. Nano Lett.2018, 18, 8016–8024.

    Article  CAS  Google Scholar 

  13. Zheng, Y. H.; Jiang, C.; Ng, S. H.; Lu, Y.; Han, F.; Bach, U.; Gooding, J. J. Unclonable plasmonic security labels achieved by shadow-mask-lithography-assisted self-assembly. Adv. Mater.2016, 28, 2330–2336.

    Article  CAS  Google Scholar 

  14. Nie, X. K.; Xu, Y. T.; Song, Z. L.; Ding, D.; Gao, F.; Liang, H.; Chen, L.; Bian, X.; Chen, Z.; Tan, W. H. Magnetic-graphitic-nanocapsule templated diacetylene assembly and photopolymerization for sensing and multicoded anti-counterfeiting. Nanoscale2014, 6, 13097–13103.

    Article  CAS  Google Scholar 

  15. Chen, H. M.; Song, M.; Guo, Z.; Li, R. F.; Zou, Q. M.; Luo, S. J.; Zhang, S.; Luo, Q.; Hong, J.; You, L. Highly secure physically unclonable cryptographic primitives based on interfacial magnetic anisotropy. Nano Lett.2018, 18, 7211–7216.

    Article  CAS  Google Scholar 

  16. Liu, X. W.; Wang, Y.; Li, X. Y.; Yi, Z. G.; Deng, R. R.; Liang, L. L.; Xie, X. J.; Loong, D. T. B.; Song, S. Y.; Fan, D. Y. et al. Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting. Nat. Commun.2017, 8, 899.

    Article  CAS  Google Scholar 

  17. Gao, R.; Yan, D. P.; Evans, D. G.; Duan, X. Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuliresponsive phosphorescence and antiforgery applications. Nano Res.2017, 10, 3606–3617.

    Article  CAS  Google Scholar 

  18. Jiang, K.; Zhang, L.; Lu, J. F.; Xu, C. X.; Cai, C. Z.; Lin, H. W. Triple-mode emission of carbon dots: Applications for advanced anti-counterfeiting. Angew. Chem., Int. Ed.2016, 55, 7231–7235.

    Article  CAS  Google Scholar 

  19. Zhang, Z. H.; Chen, Z. Y.; Sun, L. Y.; Zhang, X. X.; Zhao, Y. J. Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains. Nano Res.2019, 12, 1579–1584.

    Article  CAS  Google Scholar 

  20. Li, X.; Xie, Y. J.; Song, B.; Zhang, H. L.; Chen, H.; Cai, H. J.; Liu, W. S.; Tang, Y. A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption. Angew. Chem., Int. Ed.2017, 56, 2689–2693.

    Article  CAS  Google Scholar 

  21. Chung, K.; McAllister, A.; Bilby, D.; Kim, B. G.; Kwon, M. S.; Kioupakis, E.; Kim, J. Designing interchain and intrachain properties of conjugated polymers for latent optical information encoding. Chem. Sci.2015, 6, 6980–6985.

    Article  CAS  Google Scholar 

  22. Gao, Z. H.; Wei, C.; Yan, Y. L.; Zhang, W.; Dong, H. Y.; Zhao, J. Y.; Yi, J.; Zhang, C. H.; Li, Y. J.; Zhao, Y. S. Covert photonic barcodes based on light controlled acidichromism in organic dye doped whispering-gallery-mode microdisks. Adv. Mater.2017, 29, 1701558.

    Article  CAS  Google Scholar 

  23. You, W. W.; Tu, D. T.; Li, R. F.; Zheng, W.; Chen, X. Y. “Chameleon-like” optical behavior of lanthanide-doped fluoride nanoplates for multilevel anti-counterfeiting applications. Nano Res.2019, 12, 1417–1422.

    Article  CAS  Google Scholar 

  24. Li, X. M.; Guo, Z. Z.; Zhao, T. C.; Lu, Y.; Zhou, L.; Zhao, D. Y.; Zhang, F. Filtration shell mediated power density independent orthogonal excitations-emissions upconversion luminescence. Angew. Chem., Int. Ed.2016, 55, 2464–2469.

    Article  CAS  Google Scholar 

  25. Song, Z. P.; Lin, T. R.; Lin, L. H.; Lin, S.; Fu, F. F.; Wang, X. C.; Guo, L. Q. Invisible security ink based on water-soluble graphitic carbon nitride quantum dots. Angew. Chem., Int. Ed.2016, 55, 2773–2777.

    Article  CAS  Google Scholar 

  26. Dong, L. M.; Chen, Z.; Ye, L.; Yu, Y.; Zhang, J. B.; Liu, H.; Zang, J. F. Gram-scale synthesis of all-inorganic perovskite quantum dots with high Mn substitution ratio and enhanced dual-color emission. Nano Res.2019, 12, 1733–1738.

    Article  CAS  Google Scholar 

  27. Zhou, W. L.; Chen, Y.; Yu, Q. L.; Li, P. Y.; Chen, X. M.; Liu, Y. Photoresponsive cyclodextrin/anthracene/Eu3+ supramolecular assembly for a tunable photochromic multicolor cell label and fluorescent ink. Chem. Sci.2019, 10, 3346–3352.

    Article  CAS  Google Scholar 

  28. Feng, P. F.; Kong, M. Y.; Yang, Y. W.; Su, P. R.; Shan, C. F.; Yang, X. X.; Cao, J.; Liu, W. S.; Feng, W.; Tang, Y. Eu2+/Eu3+-based smart duplicate responsive stimuli and time-gated nanohybrid for optical recording and encryption. ACS Appl. Mater. Interfaces2019, 11, 1247–1253.

    Article  CAS  Google Scholar 

  29. Han, C.; Tang, Z. R.; Liu, J. X.; Jin, S. Y.; Xu, Y. J. Efficient photoredox conversion of alcohol to aldehyde and H2 by heterointerface engineering of bimetal-semiconductor hybrids. Chem. Sci.2019, 10, 3514–3522.

    Article  CAS  Google Scholar 

  30. Buso, D.; Jasieniak, J.; Lay, M. D. H.; Schiavuta, P.; Scopece, P.; Laird, J.; Amenitsch, H.; Hill, A. J.; Falcaro, P. Highly luminescent metal-organic frameworks through quantum dot doping. Small2012, 8, 80–88.

    Article  CAS  Google Scholar 

  31. Lohe, M. R.; Gedrich, K.; Freudenberg, T.; Kockrick, E.; Dellmann, T.; Kaskel, S. Heating and separation using nanomagnet-functionalized metal-organic frameworks. Chem. Commun.2011, 47, 3075–3077.

    Article  CAS  Google Scholar 

  32. Stylianou, K. C.; Rabone, J.; Chong, S. Y.; Heck, R.; Armstrong, J.; Wiper, P. V.; Jelfs, K. E.; Zlatogorsky, S.; Bacsa, J.; McLennan, A. G. et al. Dimensionality transformation through paddlewheel reconfiguration in a flexible and porous Zn-based metal-organic framework. J. Am. Chem. Soc.2012, 134, 20466–20478.

    Article  CAS  Google Scholar 

  33. Kim, H. K.; Yun, W. S.; Kim, M. B.; Kim, J. Y.; Bae, Y. S.; Lee, J.; Jeong, N. C. A chemical route to activation of open metal sites in the copper-based metal-organic framework materials HKUST-1 and Cu-MOF-2. J. Am. Chem. Soc.2015, 137, 10009–10015.

    Article  CAS  Google Scholar 

  34. Li, C. P.; Du, M. Role of solvents in coordination supramolecular systems. Chem. Commun.2011, 47, 5958–5972.

    Article  CAS  Google Scholar 

  35. Yang, X. G.; Yan, D. P. Long-afterglow metal-organic frameworks: Reversible guest-induced phosphorescence tunability. Chem. Sci.2016, 7, 4519–4526.

    Article  CAS  Google Scholar 

  36. Wu, S. C.; Zhong, Y. L.; Zhou, Y. F.; Song, B.; Chu, B. B.; Ji, X. Y.; Wu, Y. Y.; Su, Y. Y.; He, Y. Biomimetic preparation and dual-color bioimaging of fluorescent silicon nanoparticles. J. Am. Chem. Soc.2015, 137, 14726–14732.

    Article  CAS  Google Scholar 

  37. Xu, L. H.; Fang, G. Z.; Liu, J. F.; Pan, M. F.; Wang, R. R.; Wang, S. One-pot synthesis of nanoscale carbon dots-embedded metal-organic frameworks at room temperature for enhanced chemical sensing. J. Mater. Chem. A2016, 4, 15880–15887.

    Article  CAS  Google Scholar 

  38. Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem.2012, 4, 310–316.

    Article  CAS  Google Scholar 

  39. Esken, D.; Turner, S.; Wiktor, C.; Kalidindi, S. B.; van Tendeloo, G.; Fischer, R. A. GaN@ZIF-8: Selective formation of gallium nitride quantum dots inside a zinc methylimidazolate framework. J. Am. Chem. Soc.2011, 133, 16370–16373.

    Article  CAS  Google Scholar 

  40. Zhen, W. L.; Li, B.; Lu, G. X.; Ma, J. T. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion. Chem. Commun.2015, 51, 1728–1731.

    Article  CAS  Google Scholar 

  41. Hermes, S.; Schröder, F.; Amirjalayer, S.; Schmid, R.; Fischer, R. A. Loading of porous metal-organic open frameworks with organometallic CVD precursors: Inclusion compounds of the type [LnM]a@MOF-5. J. Mater. Chem.2006, 16, 2464–2472.

    Article  CAS  Google Scholar 

  42. Zhang, K. Y.; Yu, Q.; Wei, H. J.; Liu, S. J.; Zhao, Q.; Huang, W. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev.2018, 118, 1770–1839.

    Article  CAS  Google Scholar 

  43. Ma, D. L.; Ma, V. P. Y.; Chan, D. S. H.; Leung, K. H.; He, H. Z.; Leung, C. H. Recent advances in luminescent heavy metal complexes for sensing. Coord. Chem. Rev.2012, 256, 3087–3113.

    Article  CAS  Google Scholar 

  44. Xu, H.; Chen, R. F.; Sun, Q.; Lai, W. Y.; Su, Q. Q.; Huang, W.; Liu, X. G. Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev.2014, 43, 3259–3302.

    Article  CAS  Google Scholar 

  45. Feng, P. L.; Perry Iv, J. J.; Nikodemski, S.; Jacobs, B. W.; Meek, S. T.; Allendorf, M. D. Assessing the purity of metal-organic frameworks using photoluminescence: MOF-5, ZnO quantum dots, and framework decomposition. J. Am. Chem. Soc.2010, 132, 15487–15489.

    Article  CAS  Google Scholar 

  46. Bhunia, M. K.; Hughes, J. T.; Fettinger, J. C.; Navrotsky, A. Thermochemistry of paddle wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1. Langmuir2013, 29, 8140–8145.

    Article  CAS  Google Scholar 

  47. Hendon, C. H.; Tiana, D.; Fontecave, M.; Sanchez, C.; D’arras, L.; Sassoye, C.; Rozes, L.; Mellot-Draznieks, C.; Walsh, A. Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. J. Am. Chem. Soc.2013, 135, 10942–10945.

    Article  CAS  Google Scholar 

  48. Chen, H. B.; Chang, K. W.; Men, X. J.; Sun, K.; Fang, X. F.; Ma, C.; Zhao, Y. X.; Yin, S. Y.; Qin, W. P.; Wu, C. F. Covalent patterning and rapid visualization of latent fingerprints with photo-cross-linkable semiconductor polymer dots. ACS Appl. Mater. Interfaces2015, 7, 14477–14484.

    Article  CAS  Google Scholar 

  49. Malik, A. H.; Kalita, A.; Iyer, P. K. Development of well-preserved, substrate-versatile latent fingerprints by aggregation-induced enhanced emission-active conjugated polyelectrolyte. ACS Appl. Mater. Interfaces2017, 9, 37501–37508.

    Article  CAS  Google Scholar 

  50. Yang, L.; Liu, Y.; Zhong, Y. L.; Jiang, X. X.; Song, B.; Ji, X. Y.; Su, Y. Y.; Liao, L. S.; He, Y. Fluorescent silicon nanoparticles utilized as stable color converters for white light-emitting diodes. Appl. Phys. Lett.2015, 106, 173109.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate financial support from the National Natural Science Foundation of China (Nos. 21825402, 31400860, 21575096, and 21605109), the Natural Science Foundation of Jiangsu Province of China (Nos. BK20191417 and BK20170061) and the Program for Jiangsu Specially-Appointed Professors to Prof. Yao He, a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), 111 Project as well as Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao He.

Electronic Supplementary Material

12274_2020_2781_MOESM1_ESM.pdf

Multi-modal anti-counterfeiting and encryption enabled through silicon-based materials featuring pH-responsive fluorescence and room-temperature phosphorescence

Supplementary material, approximately 2.10 MB.

Supplementary material, approximately 1.76 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Song, B., Tang, J. et al. Multi-modal anti-counterfeiting and encryption enabled through silicon-based materials featuring pH-responsive fluorescence and room-temperature phosphorescence. Nano Res. 13, 1614–1619 (2020). https://doi.org/10.1007/s12274-020-2781-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2781-1

Keywords

Navigation