Skip to main content
Log in

Batch synthesis of transfer-free graphene with wafer-scale uniformity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Scalable synthesis of transfer-free graphene over insulators offers exciting opportunity for next-generation electronics and optoelectronics. However, rational design of synthetic protocols to harvest wafer-scale production of directly grown graphene still remains a daunting challenge. Herein we explore a batch synthesis of large-area graphene with wafer-scale uniformity by virtue of direct chemical vapor deposition (CVD) on quartz. Such a controllable CVD approach allows to synthesize 30 pieces of 4-inch graphene wafers in one batch, affording a low fluctuation of optical and electrical properties. Computational fluid dynamics simulations reveal the mechanism of uniform growth, indicating thermal field and confined flow field play leading roles in attaining the batch uniformity. The resulting wafer-scale graphene enables the direct utilization as key components in optical elements. Our method is applicable to other types of insulating substrates (e.g., sapphire, SiO2/Si, Si3N4), which may open a new avenue for direct manufacture of graphene wafers in an economic fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, L.; Peng, H. L.; Liu, Z. F. Synthesis challenges for graphene industry. Nat. Mater.2019, 18, 520–524.

    Article  CAS  Google Scholar 

  2. Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater.2010, 22, 3906–3924.

    Article  CAS  Google Scholar 

  3. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics2010, 4, 611–622.

    Article  CAS  Google Scholar 

  4. Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem.2010, 2, 1015–1024.

    Article  CAS  Google Scholar 

  5. Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S. E.; Sim, S. H.; Song, Y. I.; Hong, B. H.; Ahn, J. H. Wafer-scale synthesis and transfer of graphene films. Nano Lett.2010, 10, 490–493.

    Article  CAS  Google Scholar 

  6. Liu, M.; Yin, X. B.; Ulin-Avila, E.; Geng, B. S.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature2011, 474, 64–67.

    Article  CAS  Google Scholar 

  7. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science2008, 320, 1308.

    Article  CAS  Google Scholar 

  8. Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two dimensional material nanophotonics. Nat. Photonics2014, 8, 899–907.

    Article  CAS  Google Scholar 

  9. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol.2008, 3, 563–568.

    Article  CAS  Google Scholar 

  10. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, C.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science2004, 306, 666–669.

    Article  CAS  Google Scholar 

  11. Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater.2014, 13, 624–630.

    Article  CAS  Google Scholar 

  12. Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M. Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles. Carbon2004, 42, 2929–2937.

    CAS  Google Scholar 

  13. Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol.2008, 3, 270–274.

    Article  CAS  Google Scholar 

  14. Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science2006, 312, 1191–1196.

    Article  CAS  Google Scholar 

  15. Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett2009, 9, 30–35.

    Article  CAS  Google Scholar 

  16. Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett.2009, 9, 1752–1758.

    Article  CAS  Google Scholar 

  17. Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Rohrl, J. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater.2009, 8, 203–207.

    Article  CAS  Google Scholar 

  18. Deng, B.; Pang, Z. Q.; Chen, S. L.; Li, X.; Meng, C. X.; Li, J. Y.; Liu, M. X.; Wu, J. X.; Qi, Y.; Dang, W. H. et al. Wrinkle-free singlecrystal graphene wafer grown on strain-engineered substrates. ACS Nano2017, 11, 12337–12345.

    Article  CAS  Google Scholar 

  19. Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature2012, 490, 192–200.

    Article  CAS  Google Scholar 

  20. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. Y.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science2009, 324, 1312–1314.

    Article  CAS  Google Scholar 

  21. Zou, Z. Y.; Fu, L.; Song, X. J.; Zhang, Y. F.; Liu, Z. F. Carbide-forming groups IVB-VIB metals: A new territory in the periodic table for CVD growth of graphene. Nano Lett.2014, 14, 3832–3839.

    Article  CAS  Google Scholar 

  22. Chen, J. Y.; Wen, Y. G.; Guo, Y. L.; Wu, B.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wang, D.; Yu, G.; Liu, Y. Q. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc.2011, 133, 17548–17551.

    Article  CAS  Google Scholar 

  23. Sun, J. Y.; Chen, Y. B.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z. Y.; Chen, Z. L.; Song, X. J.; Gao, Y. F.; Rümmeli, M. H. et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett.2015, 15, 5846–5854.

    Article  CAS  Google Scholar 

  24. Sun, J. Y.; Chen, Z. L.; Yuan, L.; Chen, Y. B.; Ning, J.; Liu, S. W.; Ma, D. L.; Song, X. J.; Priydarshi, M. K.; Bachmatiuk, A. et al. Direct chemical-vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano2016, 10, 11136–11144.

    Article  CAS  Google Scholar 

  25. Chen, X. D.; Chen, Z. L.; Jiang, W. S.; Zhang, C. H.; Sun, J. Y.; Wang, H. H.; Xin, W.; Lin, L.; Priydarshi, M. K.; Yang, H. et al. Fast growth and broad applications of 25-inch uniform graphene glass. Adv. Mater2017, 29, 1603428.

    Article  Google Scholar 

  26. Chen, Z. T.; Guo, X. L.; Zhu, L.; Li, L.; Liu, Y. Y.; Zhao, L.; Zhang, W. J.; Chen, J.; Zhang, Y.; Zhao, Y. H. Direct growth of graphene on vertically standing glass by a metal-free chemical vapor deposition method. J. Mater. Sci. Technol.2018, 34, 1919–1924.

    Article  Google Scholar 

  27. Li, G.; Huang, S. H.; Li, Z. Y. Gas-phase dynamics in graphene growth by chemical vapour deposition. Phys. Chem. Chem. Phys.2015, 17, 22832–22836.

    Article  CAS  Google Scholar 

  28. Feng, J. G.; Yan, X. X.; Zhang, Y. F.; Wang, X. D.; Wu, Y. C.; Su, B.; Fu, H. B.; Jiang, L. “Liquid knife” to fabricate patterning singlecrystalline perovskite microplates toward high-performance laser arrays. Adv. Mater.2016, 28, 3732–3741.

    Article  CAS  Google Scholar 

  29. Bhaviripudi, S.; Jia, X. T.; Dresselhaus, M. S.; Kong, J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett.2010, 10, 4128–4133.

    Article  CAS  Google Scholar 

  30. Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett.2011, 11, 3190–3196.

    Article  Google Scholar 

  31. Moukalled, F.; Mangani, L.; Darwish, M. The Finite Volume Method in Computational Fluid Dynamics; Springer: Cham, 2016.

    Book  Google Scholar 

  32. Shirzadi, M.; Mirzaei, P. A.; Naghashzadegan, M. Improvement of k-epsilon turbulence model for CFD simulation of atmospheric boundary layer around a high-rise building using stochastic optimization and Monte Carlo sampling technique. J. Wind Eng. Ind. Aerod.2017, 171, 366–379.

    Article  Google Scholar 

  33. Ariafar, K.; Buttsworth, D.; Al-Doori, G.; Sharifi, N. Mixing layer effects on the entrainment ratio in steam ejectors through ideal gas computational simulations. Energy2016, 95, 380–392.

    Article  Google Scholar 

  34. Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J. Scramjet test flow reconstruction for a large-scale expansion tube, Part 2: Axisymmetric CFD analysis. Shock Waves2018, 28, 899–918.

    Article  Google Scholar 

  35. Dobbins, R. R.; Hall, R. J.; Cao, S.; Bennett, B. A. V.; Colket, M. B.; Smooke, M. D. Radiative emission and reabsorption in laminar, ethylene-fueled diffusion flames using the discrete ordinates method. Combust. Sci. Technol.2015, 187, 230–248.

    Article  CAS  Google Scholar 

  36. Currie, M.; Gaskill, D. K. Broadband absorptive neutral density optical filter. U.S. Patent 20160041318A1, February 11, 2016.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Basic Research Program of China (No. 2016YFA0200103), the National Natural Science Foundation of China (Nos. 61527814, 51702225, 51432002, 61474109, 51290272, 51502007, 11474274, and 51672007), the National Equipment Program of China (No. ZDYZ2015-1), Beijing Municipal Science and Technology Planning Project (Nos. Z181100004818002 and Z191100000819004), and Beijing Natural Science Foundation (No. 4182063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingyu Sun or Zhongfan Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Zhao, Q., Zhang, Z. et al. Batch synthesis of transfer-free graphene with wafer-scale uniformity. Nano Res. 13, 1564–1570 (2020). https://doi.org/10.1007/s12274-020-2771-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2771-3

Keywords

Navigation