Skip to main content
Log in

Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Catalytic oxidation of toluene over noble metal catalysts is a representative reaction for elimination of volatile organic compounds (VOCs). However, to fully understand the activation of molecular oxygen and the role of active oxygen species generated in this reaction is still a challenging target. Herein, MgO nanosheets and single-atom Pt loaded MgO (Pt SA/MgO) nanosheets were synthesized and used as catalysts in toluene oxidation. The activation process of molecular oxygen and oxidation performance on the two catalysts were contrastively investigated. The Pt SA/MgO exhibited significantly enhanced catalytic activity compared to MgO. The oxygen vacancies can be easily generated on the Pt SA/MgO surface, which facilitate the activation of molecular oxygen and the formation of active oxygen species. Based on the experimental data and theoretical calculations, an active oxygen species promoted oxidation mechanism for toluene was proposed. In the presence of H2O, the molecular oxygen is more favorable to be dissociated to generate •OH on the oxygen vacancies of the Pt SA/MgO surface, which is the dominant active oxygen species. We anticipate that this work may shed light on further investigation of the oxidation mechanism of toluene and other VOCs over noble metal catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weng, X. L.; Sun, P. F.; Long, Y.; Meng, Q. J.; Wu, Z. B. Catalytic oxidation of chlorobenzene over MnxCe1−xO2/HZSM-5 catalysts: A study with practical implications. Environ. Sci. Technol. 2017, 51, 8057–8066.

    CAS  Google Scholar 

  2. He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. P., Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chem. Rev., 2019, 119, 4471–4568.

    CAS  Google Scholar 

  3. Ren, Q. M.; Mo, S. P.; Peng, R. S.; Feng, Z. T.; Zhang, M. Y.; Chen, L. M.; Fu, M. L.; Wu, J. L.; Ye, D. Q., Controllable synthesis of 3D hierarchical Co3O4 nanocatalysts with various morphologies for the catalytic oxidation of toluene. J. Mater. Chem. A, 2018, 6, 498–509.

    CAS  Google Scholar 

  4. Chen, C. Y.; Wu, Q. M.; Chen, F.; Zhang, L.; Pan, S. X.; Bian, C. Q.; Zheng, X. M.; Meng, X. J.; Xiao, F. S., Aluminium-rich Beta zeolite-supported platinum nanoparticles for the low-temperature catalytic removal of toluene. J. Mater. Chem. A, 2015, 3, 5556–5562.

    CAS  Google Scholar 

  5. Suh, J. M.; Sohn, W.; Shim, Y. S.; Cho, J. S.; Song, Y. G.; Kim, T. L.; Jeon, J. M.; Kwon, K. C.; Choi, K. S.; Kang, C. Y. et al. p-p heterojunction of nickel oxide-decorated cobalt oxide nanorods for enhanced sensitivity and selectivity toward volatile organic compounds. ACS Appl. Mater. Interfaces2018, 10, 1050–1058.

    CAS  Google Scholar 

  6. Chen, X.; Chen, X.; Yu, E. Q.; Cai, S. C.; Jia, H. P.; Chen, J.; Liang, P., In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion. Chem. Eng. J., 2018, 344, 469–479.

    CAS  Google Scholar 

  7. Xia, D. H.; Xu, W. J.; Hu, L. L.; He, C.; Leung, D. Y. C.; Wang, W. J.; Wong, P. K., Synergistically catalytic oxidation of toluene over Mn modified g-C3N4/ZSM-4 under vacuum UV irradiation. J. Hazard. Mater., 2018, 349, 91–100.

    CAS  Google Scholar 

  8. Si, W. Z.; Wang, Y.; Zhao, S.; Hu, F. Y.; Li, J. H., A facile method for in situ preparation of the MnO2/LaMnO3 catalyst for the removal of toluene. Environ. Sci. Technol., 2016, 50, 4572–4578.

    CAS  Google Scholar 

  9. Chen, X.; Chen, X.; Cai, S. C.; Chen, J.; Xu, W. J. Jia, H.P.; Chen, J., Catalytic combustion of toluene over mesoporous Cr2O3-supported platinum catalysts prepared by in situ pyrolysis of MOFs. Chem. Eng. J., 2018, 334, 768–779.

    CAS  Google Scholar 

  10. Guo, Y. L.; Gao, Y. J.; Li, X.; Zhuang, G. L.; Wang, K. C.; Zheng, Y.; Sun, D. H.; Huang, J. L.; Li, Q. B. Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2. Chem. Eng. J.2019, 362, 41–52.

    CAS  Google Scholar 

  11. Zuo, S. F.; Sun, X. J.; Lv, N. N.; Qi, C. Z. Rare earth-modified kaolin/NaY-supported Pd-Pt bimetallic catalyst for the catalytic combustion of benzene. ACSAppl. Mater. Interfaces2014, 6, 11988–11996.

    CAS  Google Scholar 

  12. Miao, L.; Wang, J. L.; Zhang, P. Y., Review on manganese dioxide for catalytic oxidation of airborne formaldehyde. Appl. Surf. Sci., 2019, 466, 441–453.

    CAS  Google Scholar 

  13. Mo, S. P.; Zhang, Q.; Zhang, M. Y.; Zhang, Q.; Li, J.Q.; Fu, M. L.; Wu, J. L.; Chen, P. R.; Ye, D. Q., Elucidating the special role of strong metal-support interactions in Pt/MnO2 catalysts for total toluene oxidation. NanoscaleHoriz., 2019, 4, 1425–1433.

    CAS  Google Scholar 

  14. Liu, J.; Wang, P. L.; Qu, W. Q.; Li, H. R.; Shi, L. Y.; Zhang, D. S., Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene. Appl. Catal. BEnviron., 2019, 257, 117880.

    CAS  Google Scholar 

  15. Peng, R. S.; Li, S. J.; Sun, X. B.; Ren, Q. M.; Chen, L. M.; Fu, M. L.; Wu, J. L.; Ye, D. Q., Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts. Appl. Catal. BEnviron., 2018, 220, 462–470.

    CAS  Google Scholar 

  16. Chen, C. Y.; Chen, F.; Zhang, L.; Pan, S. X.; Bian, C. Q.; Zheng, X. M.; Meng, X. J.; Xiao, F. S., Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts. Chem. Commun., 2015, 51, 5936–5938.

    CAS  Google Scholar 

  17. Huang, Z. W.; Gu, X.; Cao, Q. Q.; Hu, P. P.; Hao, J. M.; Li, J. H.; Tang, X. F., Catalytically active single-atom sites fabricated from silver particles. Angew. Chem., Int. Ed., 2012, 51, 4198–4203.

    CAS  Google Scholar 

  18. Liu, S.; Arce, A. S.; Nilsson, S.; Albinsson, D.; Hellberg, L.; Alekseeva, S.; Langhammer, C., In situ plasmonic nanospectroscopy of the CO oxidation reaction over single Pt nanoparticles. ACSNano, 2019, 13, 6090–6100.

    CAS  Google Scholar 

  19. He, T. W.; Zhang, C. M.; Zhang, L.; Du, A. J., Single Pt atom decorated graphitic carbon nitride as an efficient photocatalyst for the hydrogenation of nitrobenzene into aniline. NanoRes., 2019, 12, 1817–1823.

    CAS  Google Scholar 

  20. Zhang, H. Y.; Sui, S. H.; Zheng, X. M.; Cao, R. R.; Zhang, P. Y., One-pot synthesis of atomically dispersed Pt on MnO2 for efficient catalytic decomposition of toluene at low temperatures. Appl. Catal. BEnviron., 2019, 257, 117878.

    CAS  Google Scholar 

  21. Xu, T. Z.; Zheng, H.; Zhang, P. Y., Isolated Pt single atomic sites anchored on nanoporous TiO2 film for highly efficient photocatalytic degradation of low concentration toluene. J. Hazard. Mater., 2020, 388, 121746.

    CAS  Google Scholar 

  22. Chen, J.; Yan, D. X.; Xu, Z.; Chen, X.; Xu, W. J.; Jia, H. P.; Chen, J., A novel redox precipitation to synthesize Au-doped α-MnO2with high dispersion toward low-temperature oxidation of formaldehyde. Environ. Sci. Technol., 2018, 52, 4728–4737.

    CAS  Google Scholar 

  23. Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q.et al., Defect effects on TiO2nanosheets: Stabilizing single atomic site au and promoting catalytic properties. Adv. Mater., 2018, 30, 1705369.

    Google Scholar 

  24. Zhu, Y. Q.; Sun, W. M.; Luo, J.; Chen, W. X.; Cao, T.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Zhang, M. L.; Han, Y. H. et al., A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat. Commun., 2018, 9, 3861.

    Google Scholar 

  25. Sun, T. T.; Zhao, S.; Chen, W. X.; Zhai, D.; Dong, J. C.; Wang, Y.; Zhang, S. L.; Han, A. J.; Gu, L.; Yu, R. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. USA2018, 115, 12692–12697.

    CAS  Google Scholar 

  26. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D., Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. NanoRes., 2019, 12, 2067–2080.

    CAS  Google Scholar 

  27. Ye, X. X.; Wang, H. W.; Lin, Y.; Liu, X.Y.; Cao, L. N.; Gu, J.; Lu, J. L., Insight of the stability and activity of platinum single atoms on ceria. NanoRes., 2019, 12, 1401–1409.

    CAS  Google Scholar 

  28. Han, Y. H.; Wang, Y. G.; Chen, W. X.; Xu, R. R.; Zheng, L. R.; Zhang, J.; Luo, J.; Shen, R. A.; Zhu, Y. Q.; Cheong, W. C.et al., Hollow n-doped carbon spheres with isolated cobalt single atomic sites: Superior electrocatalysts for oxygen reduction. J. Am. Chem. Soc., 2017, 139, 17269–17272.

    CAS  Google Scholar 

  29. Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al., Isolated single iron atoms anchored on n-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed., 2017, 56, 6937–6941.

    CAS  Google Scholar 

  30. Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al., Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun., 2015, 6, 8668.

    CAS  Google Scholar 

  31. Cui, Y.; Shao, X.; Chem, D.; Baldofski, M.; Sauer, J.; Nilius, N.; Freund, H. J., Adsorption, activation, and dissociation of oxygen on doped oxides. Angew. Chem., Int. Ed., 2013, 52, 11385–11387.

    CAS  Google Scholar 

  32. Long, R.; Mao, K. K.; Gong, M.; Zhou, S.; Hu, J. H.; Zhi, M.; You, Y.; Bai, S.; Jiang, J.; Zhang, Q. et al., Tunable oxygen activation for catalytic organic oxidation: Schottky junction versus plasmonic effects. Angew. Chem., Int. Ed., 2014, 53, 3205–3209.

    CAS  Google Scholar 

  33. Liu, Y. X.; Dai, H. X.; Du, Y. C.; Deng, J. G.; Zhang, L.; Zhao, Z. X., Lysine-aided PMMA-templating preparation and high performance of three-dimensionally ordered macroporous LaMnO3 with mesoporous walls for the catalytic combustion of toluene. Appl. Catal. BEnviron., 2012, 119-120, 20–31.

    Google Scholar 

  34. Meng, Q. J.; Wang, W. L.; Weng, X. L.; Liu, Y.; Wang, H. Q.; Wu, Z. B. Active oxygenspecies in Lan+1NinO3n+1 layered perovskites for catalytic oxidation of toluene and methane. J. Phys. Chem. C 2016, 120, 3259–3266.

    CAS  Google Scholar 

  35. Montemore, M. M.; van Spronsen, M. A.; Madix, R. J.; Friend, C. M. O2activation by metal surfaces: Implications for bonding and reactivity on heterogeneous catalysts. Chem. Rev.2018, 118, 2816–2862.

    CAS  Google Scholar 

  36. Widmann, D.; Behm, R. J., Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. Acc. Chem. Res., 2014, 47, 740–749.

    CAS  Google Scholar 

  37. Wang, X.Y.; Huang, K. K.; Yuan, L.; Xi, S. B.; Yan, W. S.; Geng, Z. B.; Cong, Y. G.; Sun, Y.; Tan, H.; Wu, X. F. et al., Activation of surface oxygen sites in a cobalt-based perovskite model catalyst for CO oxidation. J.Phys. Chem. Lett., 2018, 9, 4146–4154.

    CAS  Google Scholar 

  38. Zhao, Y. B.; Ma, W. H.; Li, Y.; Ji, H. W.; Chen, C. C.; Zhu, H. Y.; Zhao, J. C. The surface-structure sensitivity of dioxygen activation in the anatase-photocatalyzed oxidation reaction. Angew. Chem., Int. Ed. 2012, 51, 3188–3192.

    CAS  Google Scholar 

  39. Khachatryan, L.; Vejerano, E.; Lomnicki, S.; Dellinger, B., Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions. Environ. Sci. Technol., 2011, 45, 8559–8566.

    CAS  Google Scholar 

  40. Eslamibidgoli, M. J.; Eikerling, M. H., Electrochemical formation of reactive oxygen species at Pt (111)—a density functional theory study. ACSCatal., 2015, 5, 6090–6098.

    CAS  Google Scholar 

  41. Puigdollers, A. R.; Schlexer, P.; Tosoni, S.; Pacchioni, G., Increasing oxide reducibility: The role of metal/oxide interfaces in the formation of oxygen vacancies. ACSCatal., 2017, 7, 6493–6513.

    Google Scholar 

  42. Yang, X. Q.; Yu, X. L.; Jing, M. Z.; Song, W. Y.; Liu, J.; Ge, M. F. Defective MnxZr1−xO2solid solution for the catalytic oxidation of toluene: Insights into the oxygen vacancy contribution. ACSAppl. Mater. Interfaces2019, 11, 730–739.

    CAS  Google Scholar 

  43. Huang, N.; Qu, Z. P.; Dong, C.; Qin, Y.; Duan, X. X., Superior performance of α@β-MnO2 for the toluene oxidation: Active interface and oxygen vacancy. Appl. Catal. AGen., 2018, 560, 195–205.

    CAS  Google Scholar 

  44. Sinfelt, J. H.; Meitzner, G. D. X-ray absorption edge studies of the electronic structure of metal catalysts. Acc. Chem. Res.1993, 26, 1–6.

    CAS  Google Scholar 

  45. Li, J. J.; Guan, Q. Q.; Wu, H.; Liu, W.; Lin, Y.; Sun, Z. H.; Ye, X. X.; Zheng, X. S.; Pan, H. B.; Zhu, J. F. et al., Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions. J. Am. Chem. Soc., 2019, 141, 14515–14519.

    CAS  Google Scholar 

  46. Huang, W.J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al., Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun., 2015, 6, 10035.

    CAS  Google Scholar 

  47. Moses-DeBusk, M.; Yoon, M.; Allard, L. F.; Mullins, D. R.; Wu, Z. L.; Yang, X. F.; Veith, G.; Stocks, G. M.; Narula, C. K. CO oxidation on supported single Pt atoms: Experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J., Am. Chem. Soc., 2013, 135, 12634–12645.

    CAS  Google Scholar 

  48. Chen, Y. J.; Ji, S. F.; Sun, W. M.; Chen, W. X.; Dong, J. C.; Wen, J. F.; Zhang, J.; Li, Z.; Zheng, L. R.; Chen, C. et al., Discovering partially charged single-atom Pt for enhanced anti-markovnikov alkene hydrosilylation. J. Am. Chem. Soc., 2018, 140, 7407–7410.

    CAS  Google Scholar 

  49. Grillo, F.; van Bui, H.; La Zara, D.; Aarnink, A. A. I.; Kovalgin, A. Y.; Kooyman, P.; Kreutzer, M. T.; van Ommen, J. R., From single atoms to nanoparticles: Autocatalysis and metal aggregation in atomic layer deposition of Pt on TiO2nanopowder. Small, 2018, 14, 1800765.

    Google Scholar 

  50. Zhang, B. B.; Wang, L.; Zhang, Y. J.; Ding, Y.; Bi, Y. P., Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew. Chem., Int. Ed., 2018, 57, 2248–2252.

    CAS  Google Scholar 

  51. Zhang, Y.; Fu, J. L.; Zhao, H.; Jiang, R. J.; Tian, F.; Zhang, R. J., Tremella-like Ni3S2/MnS with ultrathin nanosheets and abundant oxygen vacancies directly used for high speed overall water splitting. Appl. Catal. BEnviron., 2019, 257, 117899.

    CAS  Google Scholar 

  52. Zai, H. C.; Zhao, Y. Z.; Chen, S. Y.; Ge, L.; Chen, C. F.; Chen, Q.; Li, Y. J., Heterogeneously supported pseudo-single atom Pt as sustainable hydrosilylation catalyst. NanoRes., 2018, 11, 2544–2552.

    CAS  Google Scholar 

  53. Duan, S. B.; Wang, R. M.; Liu, J. Y., Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM. Nanotechnology, 2018, 29, 204002.

    Google Scholar 

  54. Wang, Y.; Arandiyan, H.; Scott, J.; Aguey-Zinsou, K. F.; Amal, R., Single atom and nanoclustered pt catalysts for selective CO2reduction. ACSAppl. EnergyMater., 2018, 1, 6781–6789.

    CAS  Google Scholar 

  55. Porsgaard, S.; Merte, L. R.; Ono, L. K.; Behafarid, F.; Matos, J.; Helveg, S.; Salmeron, M.; Roldan Cuenya, B.; Besenbacher, F., Stability of platinum nanoparticles supported on SiO2/Si(111): A high-pressure x-ray photoelectron spectroscopy study. ACSNano, 2012, 6, 10743–10749.

    CAS  Google Scholar 

  56. Kozlova, E. A.; Lyubina, T. P.; Nasalevich, M. A.; Vorontsov, A. V.; Miller, A. V.; Kaichev, V. V.; Parmon, V. N., Influence of the method of platinum deposition on activity and stability of Pt/TiO2 photocatalysts in the photocatalytic oxidation of dimethyl methylphosphonate. Catal. Commun., 2011, 12, 597–601.

    CAS  Google Scholar 

  57. Stankic, S.; Sternig, A.; Finocchi, F.; Bernardi, J.; Diwald, O., Zinc oxide scaffolds on MgO nanocubes. Nanotechnology, 2010, 21, 355603.

    Google Scholar 

  58. Gribov, E. N.; Bertarione, S.; Scarano, D.; Lamberti, C.; Spoto, G.; Zecchina, A. Vibrational and thermodynamic properties of H2 adsorbed on MgO in the 300–20 K interval. J. Phys. Chem. B 2004, 108, 16174–16186.

    CAS  Google Scholar 

  59. Zhang, Y.F.; Ma, M. Z.; Zhang, X. Y.; Wang, B. A.; Liu, R. P., Synthesis, characterization, and catalytic property of nanosized MgO flakes with different shapes. J. AlloysCompd., 2014, 590, 373–379.

    CAS  Google Scholar 

  60. Haque, F.; Finocchi, F.; Chenot, S.; Jupille, J.; Stankic, S. Interplay between single and cooperative H2adsorption in the saturation of defect sites at MgO nanocubes. J. Phys. Chem. C 2018, 122, 17738–17747.

    CAS  Google Scholar 

  61. Radic, N.; Grbic, B.; Terlecki-Baricevic, A., Kinetics of deep oxidation of n-hexane and toluene over Pt/Al2O3 catalysts: Platinum crystallite size effect. Appl. Catal. BEnviron., 2004, 50, 153–159.

    CAS  Google Scholar 

  62. Shen, X.M.; Liu, W. Q.; Gao, X. J.; Lu, Z. H.; Wu, X. C.; Gao, X. F., Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: A general way to the activation of molecular oxygen. J. Am. Chem. Soc., 2015, 137, 15882–15891.

    CAS  Google Scholar 

  63. Yang, J.; Hu, S. Y.; Fang, Y. R.; Hoang, S.; Li, L.; Yang, W. W.; Liang, Z. F.; Wu, J.; Hu, J. P.; Xiao, W. et al. Oxygen vacancy promoted O2activation over perovskite oxide for low-temperature CO oxidation. ACSCatal.2019, 9, 9751–9763.

    CAS  Google Scholar 

  64. Liu, B.; Liu, J.; Li, T.; Zhao, Z.; Gong, X. Q.; Chen, Y.; Duan, A. J.; Jiang, G. Y.; Wei, Y. C. Interfacial effects of CeO2-supported pd nanorod in catalytic CO oxidation: A theoretical study. J. Phys. Chem. C 2015, 119, 12923–12934.

    CAS  Google Scholar 

  65. Li, Y.; Zhang, W.; Niu, J. F.; Chen, Y. S., Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACSNano, 2012, 6, 5164–5173.

    CAS  Google Scholar 

  66. Liu, Y. X.; Dai, H. X.; Deng, J. G.; Zhang, L.; Gao, B. Z.; Wang, Y.; Li, X. W.; Xie, S. H.; Guo, G. S., PMMA-templating generation and high catalytic performance of chain-like ordered macroporous LaMnO3 supported gold nanocatalysts for the oxidation of carbon monoxide and toluene. Appl. Catal. BEnviron., 2013, 140-141, 317–326.

    Google Scholar 

  67. Liu, Y. Q.; Ma, H. Y.; Lei, D.; Lou, L. L.; Liu, S. X.; Zhou, W. Z.; Wang, G. C.; Yu, K., Active oxygen species promoted catalytic oxidation of 5-hydroxymethyl-2-furfural on facet-specific Pt nanocrystals. ACSCatal., 2019, 9, 8306–8315.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Nos. 51808037, 21601136 and 21876010), the Science & Technology Development Fund of Tianjin Education Commission for Higher Education (No. 2018KJ126), and the Fundamental Research Funds for the Central Universities (No. FRF-TP-16-060A1). The authors wish to thank facility support of the 1W1B and 4B9A beamline of Beijing Synchrotron Radiation Facility (BSRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xijun Liu, Honghong Yi, Dongjuan Kang or Xiaolong Tang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Wen, Y., Liu, X. et al. Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Res. 13, 1544–1551 (2020). https://doi.org/10.1007/s12274-020-2765-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2765-1

Keywords

Navigation