Suárez Alvarez, I. Active photonic devices based on colloidal semiconductor nanocrystals and organometallic halide perovskites. Eur. Phys. J. Appl. Phys.2016, 75, 30001.
Google Scholar
Kovalenko, M. V.; Manna, L.; Cabot, A.; Hens, Z.; Talapin, D. V.; Kagan, C. R.; Klimov, V. I.; Rogach, A. L.; Reiss, P.; Milliron, D. J. et al. Prospects of nanoscience with nanocrystals. ACS Nano2015, 9, 1012–1057.
CAS
Google Scholar
Litvin, A. P.; Martynenko, I. V.; Purcell-Milton, F.; Baranov, A. V.; Fedorov, A. V.; Gun’ko, Y. K. Colloidal quantum dots for optoelectronics. J Mater. Chem. A2017, 5, 13252–13275.
CAS
Google Scholar
Kim, T. H.; Cho, K. S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J. Y.; Amaratunga, G.; Lee, S. Y. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics2011, 5, 176–182.
CAS
Google Scholar
Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics2013, 7, 13–23.
CAS
Google Scholar
Zhao, T. S.; Goodwin, E. D.; Guo, J. C.; Wang, H.; Diroll, B. T.; Murray, C. B.; Kagan, C. R. Advanced architecture for colloidal PbS quantum dot solar cells exploiting a CdSe quantum dot buffer layer. ACS Nano2016, 10, 9267–9273.
CAS
Google Scholar
Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal quantum dot solar cells. Chem. Rev.2015, 115, 12732–12763.
CAS
Google Scholar
Morales-Narváez, E.; Golmohammadi, H.; Naghdi, T.; Yousefi, H.; Kostiv, U.; Horák, D.; Pourreza, N.; Merkoçi, A. Nanopaper as an optical sensing platform. ACS Nano2015, 9, 7296–7305.
Google Scholar
Wang, G.; Leng, Y. K.; Dou, H. J.; Wang, L.; Li, W. W.; Wang, X. B.; Sun, K.; Shen, L. S.; Yuan, X. L.; Li, J. Y.et al. Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection. ACS Nano2013, 7, 471–481.
CAS
Google Scholar
Lee, J. S.; Kovalenko, M. V.; Huang, J.; Chung, D. S.; Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol.2011, 6, 348–352.
CAS
Google Scholar
Semonin, O. E.; Luther, J. M.; Beard, M. C. Quantum dots for next-generation photovoltaics. Mater. Today2012, 15, 508–515.
CAS
Google Scholar
Balazs, D. M.; Rizkia, N.; Fang, H. H.; Dirin, D. N.; Momand, J.; Kooi, B. J.; Kovalenko, M. V.; Loi, M. A. Colloidal quantum dot inks for single-step-fabricated field-effect transistors: The importance of postdeposition ligand removal. ACS Appl. Mater. Interfaces2018, 10, 5626–5632.
CAS
Google Scholar
Zhang, H. T.; Hu, B.; Sun, L. F.; Hovden, R.; Wise, F. W.; Muller, D. A.; Robinson, R. D. Surfactant ligand removal and rational fabrication of inorganically connected quantum dots. Nano Lett.2011, 11, 5356–5361.
CAS
Google Scholar
Cohen, E.; Komm, P.; Rosenthal-Strauss, N.; Dehnel, J.; Lifshitz, E.; Yochelis, S.; Levine, R. D.; Remacle, F.; Fresch, B.; Marcus, G. et al. Fast energy transfer in CdSe quantum dot layered structures: Controlling coupling with covalent-bond organic linkers. J.Phys. Chem. C2018, 122, 5753–5758.
CAS
Google Scholar
Talapin, D. V.; Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science2005, 310, 86–89.
CAS
Google Scholar
Zhao, K.; Mason, T. G. Assembly of colloidal particles in solution. Rep. Prog. Phys.2018, 81, 126601.
CAS
Google Scholar
Romo-Herrera, J. M.; Alvarez-Puebla, R. A.; Liz-Marzán, L. M. Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale2011, 3, 1304–1315.
CAS
Google Scholar
Yu, L.; Shiraishi, S.; Wang, G. Q.; Akiyama, Y.; Takarada, T.; Maeda, M. Connecting nanoparticles with different colloidal stability by DNA for programmed anisotropic self-assembly. J.Phys. Chem. C2019, 123, 15293–15300.
CAS
Google Scholar
Wang, X. J.; Li, G. P.; Chen, T.; Yang, M. X.; Zhang, Z.; Wu, T.; Chen, H. Y. Polymer-encapsulated gold-nanoparticle dimers: Facile preparation and catalytical application in guided growth of dimeric ZnO-nanowires. Nano Lett.2008, 8, 2643–2647.
CAS
Google Scholar
Chen, G.; Wang, Y.; Tan, L. H.; Yang, M. X.; Tan, L. S.; Chen, Y.; Chen, H. Y. High-purity separation of gold nanoparticle dimers and trimers. J. Am. Chem. Soc.2009, 131, 4218–4219.
CAS
Google Scholar
Zohar, N.; Chuntonov, L.; Haran, G. The simplest plasmonic molecules: Metal nanoparticle dimers and trimers. J. Photochem. Photobiol. C2014, 21, 26–39.
CAS
Google Scholar
Fernandez, Y. D.; Sun, L. L.; Gschneidtner, T.; Moth-Poulsen, K. Research update: Progress in synthesis of nanoparticle dimers by self-assembly. APL Mater.2014, 2, 010702.
Google Scholar
Yamashita, N.; Ma, Z. P.; Park, S.; Kawai, K.; Hirai, Y.; Tsuchiya, T.; Tabata, O. Formation of gold nanoparticle dimers on silicon by sacrificial DNA origami technique. Micro Nano Lett.2017, 12, 854–859.
CAS
Google Scholar
Thacker, V. V.; Herrmann, L. O.; Sigle, D. O.; Zhang, T.; Liedl, T.; Baumberg, J. J.; Keyser, U. F. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat. Commun.2014, 5, 3448.
Google Scholar
Hanrath, T. Colloidal nanocrystal quantum dot assemblies as artificial solids. J. Vac. Sci.Technol. A2012, 30, 030802.
Google Scholar
Peng, X.G.; Wilson, T. E.; Alivisatos, A. P.; Schultz, P. G. Synthesis and isolatin of a homodimer of cadmium selenide nanocrystals. Angew. Chem., Int. Ed.1997, 36, 145–147.
CAS
Google Scholar
Koole, R.; Liljeroth, P.; de Mello Donegá, C.; Vanmaekelbergh, D.; Meijerink, A. Electronic coupling and exciton energy transfer in CdTe quantum-dot molecules. J. Am. Chem. Soc.2006, 128, 10436–10441.
CAS
Google Scholar
Xu, X.X.; Stöttinger, S.; Battagliarin, G.; Hinze, G.; Mugnaioli, E.; Li, C.; Müllen, K.; Basché, T. Assembly and separation of semiconductor quantum dot dimers and trimers. J. Am. Chem. Soc.2011, 133, 18062–18065.
CAS
Google Scholar
Tanford, C. The Hydrophobic Effect: Formation of Micelles and Biological Membranes; 2nd ed. John Wiley & Sons: New York, 1980.
Google Scholar
Wu, S. S.; McGuigan, M.; Tiano, A. L.; Wong, S. S.; Glimm, J. G. A first-principles study of CdSe NANOCLUSTERS capped by thiol ligands. arXiv:1308.4671, 2013.
Altomare, M.; Fanizza, E.; Corricelli, M.; Comparelli, R.; Striccoli, M.; Curri, M. L. Patterned assembly of luminescent nanocrystals: Role of the molecular chemistry at the interface. J. Nanopart. Res.2014, 16, 2468.
Google Scholar
Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc.2013, 135, 18536–18548.
CAS
Google Scholar
Kumar, A. P.; Huy, B. T.; Kumar, B. P.; Kim, J. H.; Dao, V. D.; Choi, H. S.; Lee, Y. I. Novel dithiols as capping ligands for CdSe quantum dots: Optical properties and solar cell applications. J. Mater. Chem. C 2015, 3, 1957–1964.
CAS
Google Scholar
Hostetler, M. J.; Templeton, A. C.; Murray, R. W. Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir1999, 15, 3782–3789.
CAS
Google Scholar
McCarthy, C. L.; Brutchey, R. L. Solution processing of chalcogenide materials using thiol-amine “alkahest” solvent systems. Chem. Commun.2017, 53, 4888–4902.
CAS
Google Scholar
Mei, B. C.; Oh, E.; Susumu, K.; Farrell, D.; Mountziaris, T. J.; Mattoussi, H. Effects of ligand coordination number and surface curvature on the stability of gold nanoparticles in aqueous solutions. Langmuir2009, 25, 10604–10611.
CAS
Google Scholar
Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett.2001, 1, 207–211.
CAS
Google Scholar
Michen, B.; Geers, C.; Vanhecke, D.; Endes, C.; Rothen-Rutishauser, B.; Balog, S.; Petri-Fink, A. Avoiding drying-artifacts in transmission electron microscopy: Characterizing the size and colloidal state of nanoparticles. Sci. Rep.2015, 5, 9793.
CAS
Google Scholar
Wuister, S. F.; de Mello Donegá, C.; Meijerink, A. Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J.Phys. Chem. B2004, 108, 17393–17397.
CAS
Google Scholar
Piston, D. W.; Kremers, G. J. Fluorescent protein FRET: The good, the bad and the ugly. Trends Biochem. Sci.2007, 32, 407–414.
CAS
Google Scholar
Sapsford, K. E.; Berti, L.; Medintz, I. L. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew. Chem., Int. Ed.2006, 45, 4562–4589.
CAS
Google Scholar
Chou, K. F.; Dennis, A. M. Förster resonance energy transfer between quantum dot donors and quantum dot acceptors. Sensors2015, 15, 13288–13325.
Google Scholar
De Luca, A.; Depalo, N.; Fanizza, E.; Striccoli, M.; Curri, M. L.; Infusino, M.; Rashed, A. R.; La Deda, M.; Strangi, G. Plasmon mediated super-absorber flexible nanocomposites for metamaterials. Nanoscale2013, 5, 6097–6105.
CAS
Google Scholar
Lakowicz, J. R. Principles of Fluorescence Spectroscopy. Springer: New York, 2006; pp 443–475.
Google Scholar
Marcus, R. A.; Sutin, N. Electron transfers in chemistry and biology. Biochim.Biophys. Acta1985, 811, 265–322.
CAS
Google Scholar
Choi, J. J.; Luria, J.; Hyun, B. R.; Bartnik, A. C.; Sun, L. F.; Lim, Y. F.; Marohn, J. A.; Wise, F. W.; Hanrath, T. Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies. Nano Lett.2010, 10, 1805–1811.
CAS
Google Scholar