Skip to main content

Coupling effects in QD dimers at sub-nanometer interparticle distance

Abstract

Currently, intensive research efforts focus on the fabrication of meso-structures of assembled colloidal quantum dots (QDs) with original optical and electronic properties. Such collective features originate from the QDs coupling, depending on the number of connected units and their distance. However, the development of general methodologies to assemble colloidal QD with precise stoichiometry and particle-particle spacing remains a key challenge. Here, we demonstrate that dimers of CdSe QDs, stable in solution, can be obtained by engineering QD surface chemistry, reducing the surface steric hindrance and favoring the link between two QDs. The connection is made by using alkyl dithiols as bifunctional linkers and different chain lengths are used to tune the interparticle distance from few nm down to 0.5 nm. The spectroscopic investigation highlights that coupling phenomena between the QDs in dimers are strongly dependent on the interparticle distance and QD size, ultimately affecting the exciton dissociation efficiency.

References

  1. Suárez Alvarez, I. Active photonic devices based on colloidal semiconductor nanocrystals and organometallic halide perovskites. Eur. Phys. J. Appl. Phys.2016, 75, 30001.

    Google Scholar 

  2. Kovalenko, M. V.; Manna, L.; Cabot, A.; Hens, Z.; Talapin, D. V.; Kagan, C. R.; Klimov, V. I.; Rogach, A. L.; Reiss, P.; Milliron, D. J. et al. Prospects of nanoscience with nanocrystals. ACS Nano2015, 9, 1012–1057.

    CAS  Google Scholar 

  3. Litvin, A. P.; Martynenko, I. V.; Purcell-Milton, F.; Baranov, A. V.; Fedorov, A. V.; Gun’ko, Y. K. Colloidal quantum dots for optoelectronics. J Mater. Chem. A2017, 5, 13252–13275.

    CAS  Google Scholar 

  4. Kim, T. H.; Cho, K. S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J. Y.; Amaratunga, G.; Lee, S. Y. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics2011, 5, 176–182.

    CAS  Google Scholar 

  5. Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics2013, 7, 13–23.

    CAS  Google Scholar 

  6. Zhao, T. S.; Goodwin, E. D.; Guo, J. C.; Wang, H.; Diroll, B. T.; Murray, C. B.; Kagan, C. R. Advanced architecture for colloidal PbS quantum dot solar cells exploiting a CdSe quantum dot buffer layer. ACS Nano2016, 10, 9267–9273.

    CAS  Google Scholar 

  7. Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal quantum dot solar cells. Chem. Rev.2015, 115, 12732–12763.

    CAS  Google Scholar 

  8. Morales-Narváez, E.; Golmohammadi, H.; Naghdi, T.; Yousefi, H.; Kostiv, U.; Horák, D.; Pourreza, N.; Merkoçi, A. Nanopaper as an optical sensing platform. ACS Nano2015, 9, 7296–7305.

    Google Scholar 

  9. Wang, G.; Leng, Y. K.; Dou, H. J.; Wang, L.; Li, W. W.; Wang, X. B.; Sun, K.; Shen, L. S.; Yuan, X. L.; Li, J. Y.et al. Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection. ACS Nano2013, 7, 471–481.

    CAS  Google Scholar 

  10. Lee, J. S.; Kovalenko, M. V.; Huang, J.; Chung, D. S.; Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol.2011, 6, 348–352.

    CAS  Google Scholar 

  11. Semonin, O. E.; Luther, J. M.; Beard, M. C. Quantum dots for next-generation photovoltaics. Mater. Today2012, 15, 508–515.

    CAS  Google Scholar 

  12. Balazs, D. M.; Rizkia, N.; Fang, H. H.; Dirin, D. N.; Momand, J.; Kooi, B. J.; Kovalenko, M. V.; Loi, M. A. Colloidal quantum dot inks for single-step-fabricated field-effect transistors: The importance of postdeposition ligand removal. ACS Appl. Mater. Interfaces2018, 10, 5626–5632.

    CAS  Google Scholar 

  13. Zhang, H. T.; Hu, B.; Sun, L. F.; Hovden, R.; Wise, F. W.; Muller, D. A.; Robinson, R. D. Surfactant ligand removal and rational fabrication of inorganically connected quantum dots. Nano Lett.2011, 11, 5356–5361.

    CAS  Google Scholar 

  14. Cohen, E.; Komm, P.; Rosenthal-Strauss, N.; Dehnel, J.; Lifshitz, E.; Yochelis, S.; Levine, R. D.; Remacle, F.; Fresch, B.; Marcus, G. et al. Fast energy transfer in CdSe quantum dot layered structures: Controlling coupling with covalent-bond organic linkers. J.Phys. Chem. C2018, 122, 5753–5758.

    CAS  Google Scholar 

  15. Talapin, D. V.; Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science2005, 310, 86–89.

    CAS  Google Scholar 

  16. Zhao, K.; Mason, T. G. Assembly of colloidal particles in solution. Rep. Prog. Phys.2018, 81, 126601.

    CAS  Google Scholar 

  17. Romo-Herrera, J. M.; Alvarez-Puebla, R. A.; Liz-Marzán, L. M. Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale2011, 3, 1304–1315.

    CAS  Google Scholar 

  18. Yu, L.; Shiraishi, S.; Wang, G. Q.; Akiyama, Y.; Takarada, T.; Maeda, M. Connecting nanoparticles with different colloidal stability by DNA for programmed anisotropic self-assembly. J.Phys. Chem. C2019, 123, 15293–15300.

    CAS  Google Scholar 

  19. Wang, X. J.; Li, G. P.; Chen, T.; Yang, M. X.; Zhang, Z.; Wu, T.; Chen, H. Y. Polymer-encapsulated gold-nanoparticle dimers: Facile preparation and catalytical application in guided growth of dimeric ZnO-nanowires. Nano Lett.2008, 8, 2643–2647.

    CAS  Google Scholar 

  20. Chen, G.; Wang, Y.; Tan, L. H.; Yang, M. X.; Tan, L. S.; Chen, Y.; Chen, H. Y. High-purity separation of gold nanoparticle dimers and trimers. J. Am. Chem. Soc.2009, 131, 4218–4219.

    CAS  Google Scholar 

  21. Zohar, N.; Chuntonov, L.; Haran, G. The simplest plasmonic molecules: Metal nanoparticle dimers and trimers. J. Photochem. Photobiol. C2014, 21, 26–39.

    CAS  Google Scholar 

  22. Fernandez, Y. D.; Sun, L. L.; Gschneidtner, T.; Moth-Poulsen, K. Research update: Progress in synthesis of nanoparticle dimers by self-assembly. APL Mater.2014, 2, 010702.

    Google Scholar 

  23. Yamashita, N.; Ma, Z. P.; Park, S.; Kawai, K.; Hirai, Y.; Tsuchiya, T.; Tabata, O. Formation of gold nanoparticle dimers on silicon by sacrificial DNA origami technique. Micro Nano Lett.2017, 12, 854–859.

    CAS  Google Scholar 

  24. Thacker, V. V.; Herrmann, L. O.; Sigle, D. O.; Zhang, T.; Liedl, T.; Baumberg, J. J.; Keyser, U. F. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat. Commun.2014, 5, 3448.

    Google Scholar 

  25. Hanrath, T. Colloidal nanocrystal quantum dot assemblies as artificial solids. J. Vac. Sci.Technol. A2012, 30, 030802.

    Google Scholar 

  26. Peng, X.G.; Wilson, T. E.; Alivisatos, A. P.; Schultz, P. G. Synthesis and isolatin of a homodimer of cadmium selenide nanocrystals. Angew. Chem., Int. Ed.1997, 36, 145–147.

    CAS  Google Scholar 

  27. Koole, R.; Liljeroth, P.; de Mello Donegá, C.; Vanmaekelbergh, D.; Meijerink, A. Electronic coupling and exciton energy transfer in CdTe quantum-dot molecules. J. Am. Chem. Soc.2006, 128, 10436–10441.

    CAS  Google Scholar 

  28. Xu, X.X.; Stöttinger, S.; Battagliarin, G.; Hinze, G.; Mugnaioli, E.; Li, C.; Müllen, K.; Basché, T. Assembly and separation of semiconductor quantum dot dimers and trimers. J. Am. Chem. Soc.2011, 133, 18062–18065.

    CAS  Google Scholar 

  29. Tanford, C. The Hydrophobic Effect: Formation of Micelles and Biological Membranes; 2nd ed. John Wiley & Sons: New York, 1980.

    Google Scholar 

  30. Wu, S. S.; McGuigan, M.; Tiano, A. L.; Wong, S. S.; Glimm, J. G. A first-principles study of CdSe NANOCLUSTERS capped by thiol ligands. arXiv:1308.4671, 2013.

  31. Altomare, M.; Fanizza, E.; Corricelli, M.; Comparelli, R.; Striccoli, M.; Curri, M. L. Patterned assembly of luminescent nanocrystals: Role of the molecular chemistry at the interface. J. Nanopart. Res.2014, 16, 2468.

    Google Scholar 

  32. Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc.2013, 135, 18536–18548.

    CAS  Google Scholar 

  33. Kumar, A. P.; Huy, B. T.; Kumar, B. P.; Kim, J. H.; Dao, V. D.; Choi, H. S.; Lee, Y. I. Novel dithiols as capping ligands for CdSe quantum dots: Optical properties and solar cell applications. J. Mater. Chem. C 2015, 3, 1957–1964.

    CAS  Google Scholar 

  34. Hostetler, M. J.; Templeton, A. C.; Murray, R. W. Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir1999, 15, 3782–3789.

    CAS  Google Scholar 

  35. McCarthy, C. L.; Brutchey, R. L. Solution processing of chalcogenide materials using thiol-amine “alkahest” solvent systems. Chem. Commun.2017, 53, 4888–4902.

    CAS  Google Scholar 

  36. Mei, B. C.; Oh, E.; Susumu, K.; Farrell, D.; Mountziaris, T. J.; Mattoussi, H. Effects of ligand coordination number and surface curvature on the stability of gold nanoparticles in aqueous solutions. Langmuir2009, 25, 10604–10611.

    CAS  Google Scholar 

  37. Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett.2001, 1, 207–211.

    CAS  Google Scholar 

  38. Michen, B.; Geers, C.; Vanhecke, D.; Endes, C.; Rothen-Rutishauser, B.; Balog, S.; Petri-Fink, A. Avoiding drying-artifacts in transmission electron microscopy: Characterizing the size and colloidal state of nanoparticles. Sci. Rep.2015, 5, 9793.

    CAS  Google Scholar 

  39. Wuister, S. F.; de Mello Donegá, C.; Meijerink, A. Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J.Phys. Chem. B2004, 108, 17393–17397.

    CAS  Google Scholar 

  40. Piston, D. W.; Kremers, G. J. Fluorescent protein FRET: The good, the bad and the ugly. Trends Biochem. Sci.2007, 32, 407–414.

    CAS  Google Scholar 

  41. Sapsford, K. E.; Berti, L.; Medintz, I. L. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew. Chem., Int. Ed.2006, 45, 4562–4589.

    CAS  Google Scholar 

  42. Chou, K. F.; Dennis, A. M. Förster resonance energy transfer between quantum dot donors and quantum dot acceptors. Sensors2015, 15, 13288–13325.

    Google Scholar 

  43. De Luca, A.; Depalo, N.; Fanizza, E.; Striccoli, M.; Curri, M. L.; Infusino, M.; Rashed, A. R.; La Deda, M.; Strangi, G. Plasmon mediated super-absorber flexible nanocomposites for metamaterials. Nanoscale2013, 5, 6097–6105.

    CAS  Google Scholar 

  44. Lakowicz, J. R. Principles of Fluorescence Spectroscopy. Springer: New York, 2006; pp 443–475.

    Google Scholar 

  45. Marcus, R. A.; Sutin, N. Electron transfers in chemistry and biology. Biochim.Biophys. Acta1985, 811, 265–322.

    CAS  Google Scholar 

  46. Choi, J. J.; Luria, J.; Hyun, B. R.; Bartnik, A. C.; Sun, L. F.; Lim, Y. F.; Marohn, J. A.; Wise, F. W.; Hanrath, T. Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies. Nano Lett.2010, 10, 1805–1811.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the H2020 FET project COPAC (Contract agreement n.766563).

The MIUR PRIN 2015 n. 2015XBZ5YA is also acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marinella Striccoli.

Electronic Supplementary Material

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dibenedetto, C.N., Fanizza, E., Brescia, R. et al. Coupling effects in QD dimers at sub-nanometer interparticle distance. Nano Res. 13, 1071–1080 (2020). https://doi.org/10.1007/s12274-020-2747-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2747-3

Keywords

  • quantum dots
  • dimers
  • surface chemistry
  • dithiols
  • coupling