Skip to main content
Log in

Modulation of tumor microenvironment by metal-organic-framework-derived nanoenzyme for enhancing nucleus-targeted photodynamic therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is a promising strategy for tumor treatment. Still, its therapeutic efficacy is compromised by the unsatisfactory cytotoxicity to specific subcellular organelles and insidious tumor microenvironment properties like hypoxia and high glutathione levels. Here, we fabricated a novel nanoenzyme that derived from metal-organic framework (MOF) with intrinsic catalase-like activities to decompose H2O2 to O2 and simultaneous glutathione consumption for enhancing PDT efficacy. The obtained Mn3O4 nanoparticle shows a larger pore size and surface area compared to native MOF particles, which can be used to load high dose photosensitizer. When decorated with AS1411 aptamer and polyethylene glycol (PEG), the obtained Mn3O4-PEG@C&A particle exhibits excellent stability and cell nucleus targeting ability. Remarkably, Mn3O4-PEG@C&A particle inhibited the tumor growth in the mouse model with high efficacy without any biotoxicity. This is the first report that applied MOF-derived nanoparticle to nucleus-targeted PDT. It may provide a new approach for designing functional nanoenzyme to subcellular organelles-targeted tumor modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: The next generation. Cell2011, 144, 646–674.

    CAS  Google Scholar 

  2. Vander Heiden, M. G.; Cantley, L. C.; Thompson, C. B. Understanding the Warburg Effect: The metabolic requirements of cell proliferation. Science2009, 324, 1029–1033.

    CAS  Google Scholar 

  3. DeBerardinis, R. J.; Lum, J. J.; Hatzivassiliou, G.; Thompson, C. B. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab.2008, 7, 11–20.

    CAS  Google Scholar 

  4. Whiteside, T. L. The tumor microenvironment and its role in promoting tumor growth. Oncogene2008, 27, 5904–5912.

    CAS  Google Scholar 

  5. Cheng, Q.; Yu, W. Y.; Ye, J. J.; Liu, M. D.; Liu, W. L.; Zhang, C.; Feng, J.; Zhang, X. Z. Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy. Biomaterials2019, 224, 119500.

    CAS  Google Scholar 

  6. Catalano, V.; Turdo, A.; Di Franco, S.; Dieli, F.; Todaro, M.; Stassi, G. Tumor and its microenvironment: A synergistic interplay. Semin. Cancer Biol.2013, 23, 522–532.

    CAS  Google Scholar 

  7. Fan, W. P.; Huang, P.; Chen, X. Y. Overcoming the Achilles’ heel of photodynamic therapy. Chem. Soc. Rev.2016, 45, 6488–6519.

    CAS  Google Scholar 

  8. Sahu, A.; Kwon, I.; Tae, G. Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia. Biomaterials2020, 228, 119578.

    Google Scholar 

  9. Vaupel, P. The role of hypoxia-induced factors in tumor progression. Oncologist2004, 9, 10–17.

    CAS  Google Scholar 

  10. Wang, L. Y.; Huo, M. F.; Chen, Y.; Shi, J. L. Tumor microenvironment-enabled nanotherapy. Adv. Healthcare Mater.2018, 7, 1701156.

    Google Scholar 

  11. Gong, F.; Cheng, L.; Yang, N. L.; Betzer, O.; Feng, L. Z.; Zhou, Q.; Li, Y. G.; Chen, R. H.; Popovtzer, Liu, Z. Ultrasmall oxygen-deficient bimetallic oxide MnWOX nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy. Adv. Mater.2019, 31, 1900730.

    Google Scholar 

  12. Cook, J. A.; Gius, D.; Wink, D. A.; Krishna, M. C.; Russo, A.; Mitchell, J. B. Oxidative stress, redox, and the tumor microenvironment. Semin. Radiat. Oncol.2004, 14, 259–266.

    Google Scholar 

  13. Dai, Y. L.; Xu, C.; Sun, X. L.; Chen, X. Y. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem. Soc. Rev.2017, 46, 3830–3852.

    CAS  Google Scholar 

  14. Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater.2017, 2, 16075.

    CAS  Google Scholar 

  15. Sun, W. J.; Hu, Q. Y.; Ji, W. Y.; Wright, G; Gu, Z. Leveraging physiology for precision drug delivery. Physiol. Rev.2017, 97, 189–225.

    Google Scholar 

  16. Cheng, Y. H.; Cheng, H.; Jiang, C. X.; Qiu, X. F.; Wang, K. K.; Huan, W.; Yuan, A. H.; Wu, J. H.; Hu, Y. Q. Perfluorocarbon nano-particles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun.2015, 6, 8785.

    CAS  Google Scholar 

  17. Kim, J.; Cho, H. R.; Jeon, H.; Kim, D.; Song, C.; Lee, N.; Choi, S. H.; Hyeon, T. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J. Am. Chem. Soc.2017, 139, 10992–10995.

    CAS  Google Scholar 

  18. Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun.2018, 9, 1440.

    Google Scholar 

  19. Wei, J. P.; Li, J. C.; Sun, D.; Li, Q.; Ma, J. Y.; Chen, X. L.; Zhu, X.; Zheng, N. F. A novel theranostic nanoplatform based on Pd@Pt-PEG-Ce6 for enhanced photodynamic therapy by modulating tumor hypoxia microenvironment. Adv. Funct. Mater.2018, 28, 1706310.

    Google Scholar 

  20. Yang, Z. L.; Tian, W.; Wang, Q.; Zhao, Y.; Zhang, Y. L.; Tian, Y.; Tang. Y. X.; Wang, S. J.; Liu, Y.; Ni, Q. Q. et al. Oxygen-evolving mesoporous organosilica coated prussian blue nanoplatform for highly efficient photodynamic therapy of tumors. Adv. Sci.2018, 5, 1700847.

    Google Scholar 

  21. Huang, C. C.; Chia, W. T.; Chung, M. F.; Lin, K. J.; Hsiao, C. W.; Jin, C.; Lim, W. H.; Chen, C. C. Sung, H. W. An implantable depot that can generate oxygen in situ for overcoming hypoxia-induced resistance to anticancer drugs in chemotherapy. J. Am. Chem. Soc.2016, 138, 5222–5225.

    CAS  Google Scholar 

  22. Chen, H. C.; Tian, J. W.; He, W. J.; Guo, Z. J. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc.2015, 137, 1539–1547.

    CAS  Google Scholar 

  23. Zhang, X.; Xi, Z. Q.; Machuki, J. O.; Luo, J. J.; Yang, D. Z.; Li, J. J.; Cai, W. B., Yang, Y.; Zhang, L. J. et al. Gold cube-in-cube based oxygen nanogenerator: A theranostic nanoplatform for modulating tumor microenvironment for precise chemo-phototherapy and multimodal imaging. ACS Nano2019, 13, 5306–5325.

    CAS  Google Scholar 

  24. Liu, J. J.; Chen, Q.; Zhu, W. W.; Yi, X.; Yang, Y.; Dong, Z. L.; Liu, Z. Nanoscale-coordination-polymer-shelled manganese dioxide composite nanoparticles: A multistage redox/pH/H2O2-responsive cancer theranostic nanoplatform. Adv. Funct. Mater.2017, 27, 1605926.

    Google Scholar 

  25. Zhang, Y.; Wang, F. M.; Liu, C. Q.; Wang, Z. Z.; Kang, L. H.; Huang, Y. Y.; Dong, K.; Ren, J. S.; Qu, X. G. Nanozyme decorated metal—organic frameworks for enhanced photodynamic therapy. ACS Nano2018, 12, 651–661.

    CAS  Google Scholar 

  26. Zheng, D. W.; Li, B.; Li, C. X.; Fan, J. X.; Lei, Q.; Li, C.; Xu, Z. S.; Zhang, X. Z. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano2016, 10, 8715–8722.

    CAS  Google Scholar 

  27. He, Z. M.; Huang, X. L.; Wang, C.; Li, X. L.; Liu, Y. J.; Zhou, Z. J.; Wang, S.; Zhang, F. W.; Wang, Z. T.; Jacobson, O. et al. A catalase-like metal-organic framework nanohybrid for O2-evolving synergistic chemoradiotherapy. Angew. Chem., Int. Ed.2019, 58, 8752–8756.

    CAS  Google Scholar 

  28. Min, H.; Wang, J.; Qi, Y. Q.; Zhang, Y. L.; Han, X. X.; Xu, Y.; Xu, J. C.; Li. Y.; Chen, L.; Cheng, K. M. et al. Biomimetic metal—organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy. Adv. Mater.2019, 31, 1808200.

    Google Scholar 

  29. Liu, J. T.; Liu, T. R.; Du, P.; Zhang, L.; Lei, J. P. Metal—organic framework (MOF) hybrid as a tandem catalyst for enhanced therapy against hypoxic tumor cells. Angew. Chem., Int. Ed.2019, 58, 7808–7812.

    CAS  Google Scholar 

  30. Lan, G. X.; Ni, K. Y.; Xu, Z. W.; Veroneau, S. S.; Song, Y.; Lin, W. B. Nanoscale metal—organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc.2018, 140, 5670–5673.

    CAS  Google Scholar 

  31. Wu, J. J. X; Li, S. R.; Wei, H. Integrated nanozymes: Facile preparation and biomedical applications. Chem. Commun.2018, 54, 6520–6530.

    CAS  Google Scholar 

  32. Cai, X. C.; Xie, Z. X.; Ding, B. B.; Shao, S.; Liang, S.; Pang, M. L.; Lin, J. Monodispersed copper(I)-based nano metal—organic framework as a biodegradable drug carrier with enhanced photodynamic therapy efficacy. Adv. Sci.2019, 6, 1900848.

    Google Scholar 

  33. Simon-Yarza, T.; Mielcarek, A.; Couvreur, P.; Serre, C. Nanoparticles of metal-organic frameworks: On the road to in vivo efficacy in biomedicine. Adv. Mater.2018, 30, 1707365.

    Google Scholar 

  34. Ranji-Burachaloo, H.; Karimi, F.; Xie, K.; Fu, Q.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G. MOF-mediated destruction of cancer using the cell’s own hydrogen peroxide. ACS Appl. Mater. Interfaces2017, 9, 33599–33608.

    CAS  Google Scholar 

  35. Wang, D. D.; Wu, H. H.; Lim, W. Q.; Phua, S. Z. F.; Xu, P. P.; Chen, Q. W.; Guo, Z.; Zhao, Y. L. A mesoporous nanoenzyme derived from metal—organic frameworks with endogenous oxygen generation to alleviate tumor hypoxia for significantly enhanced photodynamic therapy. Adv. Mater.2019, 31, 1901893.

    Google Scholar 

  36. Dang, S.; Zhu, Q. L.; Xu, Q. Nanomaterials derived from metal—organic frameworks. Nat. Rev. Mater.2018, 3, 17075.

    CAS  Google Scholar 

  37. Zhang, F. R.; Liu, Y. H.; Lei, J. N.; Wang, S. H.; Ji, X. M.; Liu, H. Y.; Yang, Q. Metal—organic-framework-derived carbon nanostructures for site-specific dual-modality photothermal/photodynamic thrombus therapy. Adv. Sci.2019, 6, 1901378.

    Google Scholar 

  38. Pan, X. T.; Bai, L. X.; Wang, H.; Wu, Q. Y.; Wang, H. Y.; Liu, S.; Xu, B. L.; Shi, X. H.; Liu, H. Y. Metal—organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv. Mater.2018, 30, 1800180.

    Google Scholar 

  39. Lin, L. S.; Song, J. B.; Song, L.; Ke, K. M.; Liu, Y. J.; Zhou, Z. J.; Shen, Z. Y.; Li, J.; Yang, Z.; Tang, W. et al. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-Based nanoagent to enhance chemodynamic therapy. Angew. Chem., Int. Ed.2018, 130, 4996–5000.

    Google Scholar 

  40. Chen, W. H.; Luo, G. F.; Zhang, X. Z. Recent advances in subcellular targeted cancer therapy based on functional materials. Adv. Mater.2019, 31, 1802725.

    Google Scholar 

  41. Pan, L. M.; Liu, J. N.; Shi, J. L. Cancer cell nucleus-targeting nano-composites for advanced tumor therapeutics. Chem. Soc. Rev.2018, 47, 6930–6946.

    CAS  Google Scholar 

  42. Pan, L. M.; He, Q. J.; Liu, J. N.; Chen, Y.; Ma, M.; Zhang, L. L.; Shi, J. L. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc.2012, 134, 5722–5725.

    CAS  Google Scholar 

  43. Liu, J. N.; Bu, W. B.; Pan, L. M.; Zhang, S. J.; Chen, F.; Zhou, L. P.; Zhao, K. L.; Peng, W. J.; Shi, J. L. Simultaneous nuclear imaging and intranuclear drug delivery by nuclear-targeted multifunctional upconversion nanoprobes. Biomaterials2012, 33, 7282–7290.

    CAS  Google Scholar 

  44. Duan, J. J.; Chen, S.; Dai, S.; Qiao, S. Z. Shape control of Mn3O4 nanoparticles on nitrogen-doped graphene for enhanced oxygen reduction activity. Adv. Funct. Mater.2014, 24, 2072–2078.

    CAS  Google Scholar 

  45. Ouyang, J.; Wang, L. Q.; Chen, W. S.; Zeng, K.; Han, Y. J.; Xu, Y.; Xu, Q. F.; Xu, Q.; Deng, L.; Liu, Y. N. Biomimetic nanothylakoids for efficient imaging-guided photodynamic therapy for cancer. Chem. Commun.2018, 54, 3468–3471.

    CAS  Google Scholar 

  46. Zhai, S. D.; Hu, X. L.; Hu, Y. J.; Wu, B. Y.; Xing, D. Visible light-induced crosslinking and physiological stabilization of diselenide-rich nanoparticles for redox-responsive drug release and combination chemotherapy. Biomaterials2017, 121, 41–54.

    CAS  Google Scholar 

  47. Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou. Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev.2019, 48, 1004–1076.

    CAS  Google Scholar 

  48. Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev.2014, 114, 10869–10939.

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from National Natural Science Foundation of China (Nos. 21775049, 31700746, 31870856 and 31870854) and National Key R&D Program of China (Nos. 2017YFA0700403 and 2016YFF0100801) and China Postdoctoral Science Foundation funded project (Nos. 2018M630847 and 2018T110753).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-Feng Liu.

Electronic Supplementary Material

12274_2020_2746_MOESM1_ESM.pdf

Modulation of tumor microenvironment by metal-organic-framework-derived nanoenzyme for enhancing nucleus-targeted photodynamic therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Yan, S., Chen, P. et al. Modulation of tumor microenvironment by metal-organic-framework-derived nanoenzyme for enhancing nucleus-targeted photodynamic therapy. Nano Res. 13, 1527–1535 (2020). https://doi.org/10.1007/s12274-020-2746-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2746-4

Keywords

Navigation