Skip to main content
Log in

Electrical probing of carrier separation in InAs/InP/GaAsSb core-dualshell nanowires

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We investigate the tunnel coupling between the outer p-type GaAsSb shell and the n-type InAs core in catalyst-free InAs/InP/GaAsSb core-dualshell nanowires. We present a device fabrication protocol based on wet-etching processes on selected areas of the nanostructures that enables multiple configurations of measurements in the same nanowire-based device (i.e. shell-shell, core-core and core-shell). Low-temperature (4.2 K) transport in the shell-shell configuration in nanowires with 5 nm-thick InP barrier reveals a weak negative differential resistance. Differently, when the InP barrier thickness is increased to 10 nm, this negative differential resistance is fully quenched. The electrical resistance between the InAs core and the GaAsSb shell, measured in core-shell configuration, is significantly higher with respect to the resistance of the InAs core and of the GaAsSb shell. The field effect, applied via a back-gate, has an opposite impact on the electrical transport in the core and in the shell portions. Our results show that electron and hole free carriers populate the InAs and GaAsSb regions respectively and indicate InAs/InP/GaAsSb core-dualshell nanowires as an ideal system for the investigation of the physics of interacting electrons and holes at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomioka, K.; Fukui, T. Recent progress in integration of III–V nanowire transistors on Si substrate by selective-area growth. J. Phys. D: Appl. Phys.2014, 47, 394001.

    Article  Google Scholar 

  2. Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature2002, 415, 617–620.

    Article  CAS  Google Scholar 

  3. Lauhon, L. J.; Gudiksen, M. S.; Wang D. L.; Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature2002, 420, 57–61.

    Article  CAS  Google Scholar 

  4. Johansson, J.; Dick, K. A. Recent advances in semiconductor nanowire heterostructures. CrystEngComm2011, 13, 7175–7184.

    Article  CAS  Google Scholar 

  5. Zhang, Y. Y.; Wu, J.; Aagesen M.; Liu, H. Y. III–V nanowires and nanowire optoelectronic devices. J. Phys. D: Appl. Phys.2015, 48, 463001.

    Article  Google Scholar 

  6. Battiato, S.; Wu, S.; Zannier, V.; Bertoni, A.; Goldoni, G.; Li, A.; Xiao, S.; Han, X. D.; Beltram, F.; Sorba, L. et al. Polychromatic emission in a wide energy range from InP-InAs-InP multi-shell nanowires. Nanotechnology2019, 30, 194004.

    Article  CAS  Google Scholar 

  7. Wu, S. Y.; Peng, K.; Battiato, S.; Zannier, V.; Bertoni, A.; Goldoni, G.; Xie, X.; Yang, J. N.; Xiao S.; Qian, C. J. et al. Anisotropies of the g-factor tensor and diamagnetic coefficient in crystal-phase quantum dots in InP nanowires. Nano Res.2019, 12, 2842–2848.

    Article  CAS  Google Scholar 

  8. Li, D. P.; Lan, C. Y.; Manikandan, A.; Yip, S.; Zhou, Z. Y.; Liang, X. G.; Shu, L.; Chueh, Y. L.; Han, N.; Ho, J. C. Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nat. Commun.2019, 10, 1664.

    Article  Google Scholar 

  9. Nadar, N.; Rolland, C.; Lampin J. F.; Wallart, X.; Caroff, P.; Leturcq, R. Tunnel junctions in a III–V nanowire by surface engineering. Nano Res.2015, 8, 980–989.

    Article  CAS  Google Scholar 

  10. Borg, B. M.; Dick, K. A.; Ganjipour, B.; Pistol, M. E.; Wernersson, L. E.; Thelander, C. InAs/GaSb heterostructure nanowires for tunnel field-effect transistors. Nano Lett.2010, 10, 4080–4085.

    Article  CAS  Google Scholar 

  11. Kakkerla, R. K.; Hsiao, C. J.; Anandan, D.; Kumar Singh, S.; Po Chang, S.; Pande, K. P.; Chang, E. Y. Growth and crystal structure investigation of InAs/GaSb heterostructure nanowires on Si substrate. IEEE Trans. Nanotechnol.2018, 17, 1151–1158.

    Article  CAS  Google Scholar 

  12. Webb, J. L.; Persson, O.; Dick, K. A.; Thelander, C.; Timm, R.; Mikkelsen, A. High resolution scanning gate microscopy measurements on InAs/GaSb nanowire Esaki diode devices. Nano Res.2014, 7, 877–887.

    Article  CAS  Google Scholar 

  13. Borg, B. M.; Ek, M.; Ganjipour, B.; De A. W.; Dick, K. A.; Wernersson, L. E.; Thelander, C. Influence of doping on the electronic transport in GaSb/InAs(Sb) nanowire tunnel devices. Appl. Phys. Lett.2012, 101, 043508.

    Article  Google Scholar 

  14. Dey, A. W.; Borg, B. M.; Ganjipour, B.; Ek, M.; Dick K. A.; Lind, E.; Thelander, C.; Wernersson, L. E. High-current GaSb/InAs(Sb) nanowire tunnel field-effect transistors. IEEE Electron Device Lett.2013, 34, 211–213.

    Article  CAS  Google Scholar 

  15. Ganjipour, B.; Dey, A. W.; Borg, B. M.; Ek, M.; Pistol, M. E.; Dick, K. A.; Wernersson, L. E.; Thelander, C. High current density Esaki tunnel diodes based on GaSb-InAsSb heterostructure nanowires. Nano Lett.2011, 11, 4222–4226.

    Article  CAS  Google Scholar 

  16. Zeng, X. L.; Otnes, G.; Heurlin, M.; Mourão, R. T.; Borgström, M. T. InP/GaInP nanowire tunnel diodes. Nano Res.2018, 11, 2523–2531.

    Article  CAS  Google Scholar 

  17. Rossella, F.; Bertoni, A.; Ercolani, D.; Rontani, M.; Sorba, L.; Beltram F.; Roddaro, S. Nanoscale spin rectifiers controlled by the Stark effect. Nat. Nanotechnol.2014, 9, 997–1001.

    Article  CAS  Google Scholar 

  18. Thomas, F. S.; Baumgartner, A.; Gubser, L.; Jünger, C.; Fülöp, G.; Nilsson, M.; Rossi, F.; Zannier, V.; Sorba, L.; Schönenberger, C. Highly symmetric and tunable tunnel couplings in InAs/InP nanowire heterostructure quantum dots. Nanotechnology2020, 31, 135003.

    Article  Google Scholar 

  19. Jünger, C.; Baumgartner, A.; Delagrange, R.; Chevallier, D.; Lehmann, S.; Nilsson, M.; Dick, K. A.; Thelander, C.; Schönenberger, C. Spectroscopy of the superconducting proximity effect in nanowires using integrated quantum dots. Commun. Phys.2019, 2, 76.

    Article  Google Scholar 

  20. Royo, M.; De Luca, M.; Rurali, R.; Zardo, I. A review on III–V core-multishell nanowires: Growth, properties, and applications. J. Phys. D: Appl. Phys.2017, 50, 143001.

    Article  Google Scholar 

  21. Arif, O.; Zannier, V.; Li, A.; Rossi, F.; Ercolani, D.; Beltram, F.; Sorba, L. Growth and strain relaxation mechanisms of InAs/InP/GaAsSb core-dual-shell nanowires. Cryst. Growth Des.2020, 20, 1088–1096.

    Article  CAS  Google Scholar 

  22. Czaban, J. A.; Thompson, D. A.; LaPierre, R. R. GaAs core-shell nanowires for photovoltaic applications. Nano Lett.2009, 9, 148–154.

    Article  CAS  Google Scholar 

  23. Rocci, M.; Rossella, F.; Gomes, U. P.; Zannier, V.; Rossi, F.; Ercolani, D.; Sorba, L.; Beltram, F.; Roddaro, S. Tunable esaki effect in catalyst-free InAs/GaSb core-shell nanowires. Nano Lett.2016, 16, 7950–7955.

    Article  CAS  Google Scholar 

  24. Ganjipour, B.; Ek, M.; Borg, B. M.; Dick, K. A.; Pistol, M. E.; Wernersson, L. E.; Thelander, C. Carrier control and transport modulation in GaSb/InAsSb core/shell nanowires. Appl. Phys. Lett.2012, 101, 103501.

    Article  Google Scholar 

  25. Vasen, T.; Ramvall, P.; Afzalian, A.; Doornbos, G.; Holland, M.; Thelander, C.; Dick, K. A.; Wernersson, L. E.; Passlack, M. Vertical gate-all-around nanowire GaSb-InAs core-shell n-type tunnel FETs. Sci. Rep.2019, 9, 202.

    Article  CAS  Google Scholar 

  26. Ganjipour, B.; Leijnse, M.; Samuelson, Xu, L. H. Q.; Thelander, C. Transport studies of electron-hole and spin-orbit interaction in GaSb/InAsSb core-shell nanowire quantum dots. Phys. Rev. B2015, 91, 161301.

    Article  Google Scholar 

  27. Furthmeier, S.; Dirnberger, F.; Gmitra, M.; Bayer, A.; Forsch, M.; Hubmann, J.; Schüller, C.; Reiger, E.; Fabian, J.; Korn, T. et al. Enhanced spin-orbit coupling in core/shell nanowires. Nat. Commun.2016, 7, 12413.

    Article  CAS  Google Scholar 

  28. Esaki, L. Long journey into tunneling. Proc. IEEE1974, 62, 825–831.

    Article  Google Scholar 

  29. Beukman, A. J. A.; De Vries, F. K.; Van Veen, J.; Skolasinski, R.; Wimmer, M.; Qu, F. M.; De Vries, D. T.; Nguyen, B. M.; Yi, W.; Kiselev, A. A. et al. Spin-orbit interaction in a dual gated InAs/GaSb quantum well. Phys. Rev. B2017, 96, 241401.

    Article  Google Scholar 

  30. Du, L. J.; Li, X. W.; Lou, W. K.; Sullivan, G.; Chang, K.; Kono, J.; Du, R. R. Evidence for a topological excitonic insulator in InAs/GaSb bilayers. Nat. Commun.2017, 8, 1971.

    Article  Google Scholar 

  31. Keller, A. J.; Lim, J. S.; Sánchez, D.; López, R.; Amasha, S.; Katine, J. A.; Shtrikman, H.; Goldhaber-Gordon, D. Cotunneling drag effect in coulomb-coupled quantum dots. Phys. Rev. Lett.2016, 117, 066602.

    Article  CAS  Google Scholar 

  32. Grasselli, F.; Bertoni, A.; Goldoni, G. The role of internal dynamics in the coherent evolution of indirect excitons, Superlattices Microstruct.2017, 108, 73–78.

    CAS  Google Scholar 

  33. Vurgaftman, I.; Meyer, J. R.; Ram-Mohan, L. R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys.2001, 89, 5815–5875.

    Article  CAS  Google Scholar 

  34. Song, L.; Degroote, S.; Choi, K. H.; Borghs, G.; Heremans, P. Release of epitaxial layers grown on InAs substrates. Electrochem. Solid-State Lett.2003, 6, G25–G26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research activity was partially supported by the SUPERTOP project, QUANTERA ERA-NET Cofound in Quantum Technologies, and by the FET-OPEN project AndQC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sedighe Salimian or Francesco Rossella.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimian, S., Arif, O., Zannier, V. et al. Electrical probing of carrier separation in InAs/InP/GaAsSb core-dualshell nanowires. Nano Res. 13, 1065–1070 (2020). https://doi.org/10.1007/s12274-020-2745-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2745-5

Keywords

Navigation