Skip to main content

Moiré patterns arising from bilayer graphone/graphene superlattice

Abstract

Moiré patterns from two-dimensional (2D) graphene heterostructures assembled via van der Waals interactions have sparked considerable interests in physics with the purpose to tailor the electronic properties of graphene. Here we report for the first time the observation of moiré patterns arising from a bilayer graphone/graphene superlattice produced through direct single-sided hydrogenation of a bilayer graphene on substrate. Compared to pristine graphene, the bilayer superlattice exhibits a rippled surface and two types of moiré patterns are observed: triangular and linear moiré patterns with the periodicities of 11 nm and 8–9 nm, respectively. These moiré patterns are revealed from atomic force microscopy and further confirmed by following fast Fourier transform (FFT) analysis. Density functional theory (DFT) calculations are also performed and the optimized lattice constants of bilayer superlattice heterostructure are in line with our experimental analysis. These findings show that well-defined triangular and linear periodic potentials can be introduced into the graphene system through the single-sided hydrogenation and also open a route towards the tailoring of electronic properties of graphene by various moiré potentials.

References

  1. Ponomarenko, L. A.; Gorbachev, R. V.; Yu, G. L.; Elias, D. C.; Jalil, R.; Patel, A. A,; Mishchenko, A.; Mayorov, A. S.; Woods, C. R.; Wallbank, J. R. et al. Cloning of Dirac fermions in graphene superlattices. Nature2013, 497, 594–597.

    CAS  Google Scholar 

  2. Geim, A. K. Graphene: Status and prospects. Science2009, 324, 1530–1534.

    CAS  Google Scholar 

  3. Gorbachev, R. V.; Song, J. C. W.; Yu, G. L.; Kretinin, A. V.; Withers, F.; Cao, Y.; Mishchenko, A.; Grigorieva, I. V.; Novoselov, K. S.; Levitov, L. S. et al. Detecting topological currents in graphene superlattices. Science2014, 346, 448–451.

    CAS  Google Scholar 

  4. Li, H.; Daukiya, L.; Haldar, S.; Lindblad, A.; Sanyal, B.; Eriksson, O.; Aubel, D.; Hajjar-Garreau, S.; Simon, L.; Leifer, K. Site-selective local fluorination of graphene induced by focused ion beam irradiation. Sci. Rep. 2016, 6, 19719.

    CAS  Google Scholar 

  5. Liu, J. W.; Chen, S.; Papadakis, R.; Li, H. Nanoresolution patterning of hydrogenated graphene by electron beam induced C-H dissociation. Nanotechnology2018, 29, 415304.

    Google Scholar 

  6. Lundstedt, A.; Papadakis, R.; Li, H.; Han, Y. Y.; Jorner, K.; Bergman, J.; Leifer, K.; Grennberg, H.; Ottosson, H. White-light photoassisted covalent functionalization of graphene using 2-propanol. Small Methods2017, 1, 1700214.

    Google Scholar 

  7. Wang, N.; Samani, M. K.; Li, H.; Dong, L.; Zhang, Z. W.; Su, P.; Chen, S. J.; Chen, J.; Huang, S. R.; Yuan, G. J. et al. Tailoring the thermal and mechanical properties of graphene film by structural engineering. Small2018, 14, 1801346.

    Google Scholar 

  8. Li, H.; Papadakis, R.; Jafri, S. Commun. Phys. 2018, 1, 44.

    Google Scholar 

  9. Kumar, R. K.; Chen, X.; Auton, G. H.; Mishchenko, A.; Bandurin, D. A.; Morozov, S. V.; Cao, Y.; Khestanova, E.; Ben Shalom, M.; Kretinin, A. V. et al. High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices. Science2017, 357, 181–184.

    Google Scholar 

  10. Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature2018, 556, 43–50.

    CAS  Google Scholar 

  11. Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature2018, 556, 80–84.

    CAS  Google Scholar 

  12. Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature2013, 497, 598–602.

    CAS  Google Scholar 

  13. Khitrova, G.; Gibbs, H. M.; Kira, M.; Koch, S. W.; Scherer, A. Vacuum Rabi splitting in semiconductors. Nat. Phys. 2006, 2, 81–90.

    CAS  Google Scholar 

  14. Yang, W.; Chen, G. R.; Shi, Z. W.; Liu, C. C.; Zhang, L. C.; Xie, G. B.; Cheng, M.; Wang, D. M.; Yang, R.; Shi, D. X. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride Nat. Mater. 2013, 12, 792–797.

    CAS  Google Scholar 

  15. Wintterlin, J.; Bocquet, M. L. Graphene on metal surfaces. Surf. Sci. 2009, 603, 1841–1852.

    CAS  Google Scholar 

  16. Sutter, P.; Hybertsen, M. S.; Sadowski, J. T.; Sutter, E. Electronic structure of few-layer epitaxial graphene on Ru(0001). Nano Lett. 2009, 9, 2654–2660.

    CAS  Google Scholar 

  17. Dedkov, Y. S.; Fonin, M.; Rüdiger, U.; Laubschat, C. Rashba effect in the graphene/Ni(111) system. Phys. Rev. Lett. 2008, 100, 107602.

    Google Scholar 

  18. Pletikosić, I.; Kralj, M.; Pervan, P.; Brako, R.; Coraux, J.; N’Diaye, A. T,; Busse, C.; Michely, T. Dirac cones and minigaps for graphene on Ir(111). Phys. Rev. Lett. 2009, 102, 056808.

    Google Scholar 

  19. Gao, M.; Pan, Y.; Huang, L.; Hu, H.; Zhang, L. Z.; Guo, H. M.; Du, S. X.; Gao, H. J. Epitaxial growth and structural property of graphene on Pt(111). Appl. Phys. Lett. 2011, 98, 033101.

    Google Scholar 

  20. Li, G. H.; Luican, A.; Lopes Dos Santos, J. M. B.; Castro Neto, A. H.; Reina, A.; Kong, J.; Andrei, E. Y. Observation of Van Hove singularities in twisted graphene layers Nat. Phys. 2010, 6, 109–113.

    Google Scholar 

  21. Brihuega, I.; Mallet, P.; González-Herrero, H.; Trambly De Laissardière, G.; Ugeda, M. M.; Magaud, L.; Gómez-Rodríguez, J. M.; Ynduráin, F.; Veuillen, J. Y. Unraveling the intrinsic and robust nature of van hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis. Phys. Rev. Lett. 2012, 109, 196802.

    CAS  Google Scholar 

  22. Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K. et al. Control of Graphene’s properties by reversible hydrogenation: Evidence for Graphane. Science2009, 323, 610–613.

    CAS  Google Scholar 

  23. Sessi, P.; Guest, J. R.; Bode, M.; Guisinger, N. P. Patterning graphene at the nanometer scale via hydrogen desorption. Nano Lett. 2009, 9, 4343–4347.

    CAS  Google Scholar 

  24. Guisinger, N. P.; Rutter, G. M.; Crain, J. N.; First, P. N.; Stroscio, J. A. Exposure of epitaxial graphene on SiC(0001) to atomic hydrogen. Nano Lett. 2009, 9, 1462–1466.

    CAS  Google Scholar 

  25. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B1993, 47, 558–561.

    CAS  Google Scholar 

  26. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B1994, 49, 14251–14269.

    CAS  Google Scholar 

  27. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B1996, 54, 11169–11186.

    CAS  Google Scholar 

  28. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  29. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B1994, 50, 17953–17979.

    Google Scholar 

  30. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    CAS  Google Scholar 

  31. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B1976, 13, 5188–5192.

    Google Scholar 

  32. Yan, K.; Peng, H. L.; Zhou, Y.; Li, H,; Liu, Z. F. Formation of bilayer Bernal graphene: Layer-by-layer epitaxy via chemical vapor deposition. Nano Lett. 2011, 11, 1106–1110.

    CAS  Google Scholar 

  33. Ansari, R.; Mirnezhad, M.; Rouhi, H. Mechanical properties of fully hydrogenated graphene sheets. Solid State Commun. 2015, 201, 1–4.

    CAS  Google Scholar 

  34. Papadakis, R.; Li, H.; Bergman, J.; Lundstedt, A.; Jorner, K.; Ayub, R.; Haldar, S.; Jahn, B. O.; Denisova, A.; Zietz, B.; Lindh, R. et al. Metal-free photochemical silylations and transfer hydrogenations of benzenoid hydrocarbons and graphene. Nat. Commun. 2016, 7, 12962.

    CAS  Google Scholar 

  35. Jones, J. D.; Mahajan, K. K.; Williams, W. H.; Ecton, P. A.; Mo, Y.; Perez, J. M. Formation of graphane and partially hydrogenated graphene by electron irradiation of adsorbates on graphene. Carbon2010, 48, 2335–2340.

    CAS  Google Scholar 

  36. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature2007, 446, 60–63.

    CAS  Google Scholar 

  37. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Obergfell, D.; Roth, S.; Girit, C.; Zettl, A. O. the roughness of single- and bi-layer graphene membranes. Solid State Commun. 2007, 143, 101–109.

    CAS  Google Scholar 

  38. He, L.; Wang, H. S.; Chen, L. X.; Wang, X. J.; Xie, H.; Jiang, C. X.; Li, C.; Elibol, K.; Meyer, J.; Watanabe, K. et al. Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment. Nat. Commun. 2019, 10, 2815.

    Google Scholar 

  39. Tang, S. J.; Wang, H. M.; Zhang, Y.; Li, A.; Xie, H.; Liu, X. Y.; Liu, L. Q.; Li, T. X.; Huang, F. Q.; Xie, X. M. et al. Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition. Sci. Rep. 2013, 3, 2666.

    Google Scholar 

  40. Yi, D.; Yang, L.; Xie, S. J.; Saxena, A. Stability of hydrogenated graphene: A first-principles study. RSC Adv. 2015, 5, 20617–20622.

    CAS  Google Scholar 

  41. Averill, F. W.; Morris, J. R.; Cooper, V. R. Calculated properties of fully hydrogenated single layers of BN, BC2N, and graphene: Graphane and its BN-containing analogues. Phys. Rev. B2009, 80, 195411.

    Google Scholar 

  42. Zhou, J.; Wang, Q.; Sun, Q.; Chen, X. S.; Kawazoe, Y.; Jena, P. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett. 2009, 9, 3867–3870.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (No. 51905306), the China Postdoctoral Science Fund (No. 2018M642650) and the Special Support for Post-doc Creative Funding of Shandong Province (No. 201902005). We are also grateful for the funding support from the University of Manchester Donator Foundation and Swedish Research Council Formas (No. 2019-01538). Dr. Chloe Holyord from National Graphene Institute, University of Manchester is gratefully acknowledged for the help with AFM measurements. Dr. Linqing Zhang and Mr. Malachy Mcgowan are greatly acknowledged for the experimental support in the sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hu Li or Jiangwei Liu.

Electronic Supplementary Material

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecomm-ons.org/licenses/by/4.0/

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Papadakis, R., Hussain, T. et al. Moiré patterns arising from bilayer graphone/graphene superlattice. Nano Res. 13, 1060–1064 (2020). https://doi.org/10.1007/s12274-020-2744-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2744-6

Keywords

  • Moiré patterns
  • graphone/graphene superlattice
  • atomic force microscopy
  • triangular pattern
  • linear pattern