Skip to main content
Log in

Semi-transparent, flexible, and electrically conductive silicon mesh by capillarity-driven welding of vapor-liquid-solid-grown nanowires over large areas

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bottom-up synthesis of semiconductor nanowires (NWs) by the vapor-liquid-solid (VLS) mechanism has enabled diverse technological applications for these nanomaterials. Unlike metallic NWs, however, it has been challenging to form large-area interconnected NW networks. Here, we generate centimeter-scale meshes of mechanically and electrically interconnected Si NWs by sequentially growing, collapsing, and joining the NWs using a capillarity-driven welding mechanism. We fabricate meshes from VLS-grown NWs ranging in diameter from 20 to 100 nm and find that the meshes are three-dimensional with a thickness ranging from ~ 1 to ~ 10 microns depending on the NW diameter. Optical extinction measurements reveal that the networks are semi-transparent with a color that depends on the absorption and scattering characteristics of individual NWs. Moreover, active voltage contrast imaging of both centimeter- and micron-scale meshes reveals widespread electrical connectivity. Using a sacrificial layer, we demonstrate that the mesh can be liberated from the growth substrate, yielding a highly flexible and transparent film. Electrical transport measurements both on the growth substrate and on liberated, flexible films reveal electrical conduction across a centimeter scale with a sheet resistance of ~ 160–180 kΩ/square that does not change significantly upon bending. Given the ability to encode complex functionality in semiconductor NWs through the VLS process, we believe these meshes of networked NWs could find application as neuromorphic memory, electrode scaffolds, and bioelectronic interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lieber, C. M. Semiconductor nanowires: A platform for nanoscience and nanotechnology. MRS Bull.2011, 36, 1052–1063.

    Article  CAS  Google Scholar 

  2. Zhang, A. Q.; Zheng, G. F.; Lieber, C. M. Nanowires: Building Blocks for Nanoscience and Nanotechnology; Springer: Cham, 2016.

    Book  Google Scholar 

  3. Tian, B. Z.; Cohen-Karni, T.; Qing, Q.; Duan, X. J.; Xie, P.; Lieber, C. M. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science2010, 329, 830–834.

    Article  CAS  Google Scholar 

  4. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol.2008, 3, 31–35.

    Article  CAS  Google Scholar 

  5. Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater.2010, 9, 821–826.

    Article  CAS  Google Scholar 

  6. Garg, R.; Rastogi, S. K.; Lamparski, M.; de la Barrera, S. C.; Pace, G. T.; Nuhfer, N. T.; Hunt, B. M.; Meunier, V.; Cohen-Karni, T. Nanowire-mesh-templated growth of out-of-plane three-dimensional fuzzy graphene. ACS Nano2017, 11, 6301–6311.

    Article  CAS  Google Scholar 

  7. Sandler, J. K. W.; Kirk, J. E.; Kinloch, I. A.; Shaffer, M. S. P.; Windle, A. H. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer2003, 44, 5893–5899.

    Article  CAS  Google Scholar 

  8. De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano2009, 3, 1767–1774.

    Article  CAS  Google Scholar 

  9. Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano2010, 4, 2955–2963.

    Article  CAS  Google Scholar 

  10. Lyons, P. E.; De, S.; Elias, J.; Schamel, M.; Philippe, L.; Bellew, A. T.; Boland, J. J.; Coleman, J. N. High-performance transparent conductors from networks of gold nanowires. J. Phys. Chem. Lett.2011, 2, 3058–3062.

    Article  CAS  Google Scholar 

  11. Rathmell, A. R.; Wiley, B. J. The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv. Mater.2011, 23, 4798–4803.

    Article  CAS  Google Scholar 

  12. Rabbani, M. G.; Patil, S. R.; Verma, A.; Villarreal, J. E.; Korgel, B. A.; Nekovei, R.; Khader, M. M.; Darling, R. B.; Anantram, M. P. Zero-bias photocurrents in highly-disordered networks of Ge and Si nanowires. Nanotechnology2016, 27, 045201.

    Article  CAS  Google Scholar 

  13. Hossain, M.; Kumar, G. S.; Barimar Prabhava, S. N.; Sheerin, E. D.; McCloskey, D.; Acharya, S.; Rao, K. D. M.; Boland, J. J. Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications. ACS Nano2018, 12, 4727–4735.

    Article  CAS  Google Scholar 

  14. Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science2001, 293, 1289–1292.

    Article  CAS  Google Scholar 

  15. Kempa, T. J.; Tian, B. Z.; Kim, D. R.; Hu, J. S.; Zheng, X. L.; Lieber, C. M. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett.2008, 8, 3456–3460.

    Article  CAS  Google Scholar 

  16. Hill, D. J.; Teitsworth, T. S.; Ritchie, E. T.; Atkin, J. M.; Cahoon, J. F. Interplay of surface recombination and diode geometry for the performance of axial p-i-n nanowire solar cells. ACS Nano2018, 12, 10554–10563.

    Article  CAS  Google Scholar 

  17. Christesen, J. D.; Pinion, C. W.; Grumstrup, E. M.; Papanikolas, J. M.; Cahoon, J. F. Synthetically encoding 10 nm morphology in silicon nanowires. Nano Lett.2013, 13, 6281–6286.

    Article  CAS  Google Scholar 

  18. Wang, D. L.; Qian, F.; Yang, C.; Zhong, Z. H.; Lieber, C. M. Rational growth of branched and hyperbranched nanowire structures. Nano Lett.2004, 4, 871–874.

    Article  CAS  Google Scholar 

  19. Grebinski, J. W.; Hull, K. L.; Zhang, J.; Kosel, T. H.; Kuno, M. Solution-based straight and branched CdSe nanowires. Chem. Mater.2004, 16, 5260–5272.

    Article  CAS  Google Scholar 

  20. Zhu, J.; Peng, H. L.; Chan, C. K.; Jarausch, K.; Zhang, X. F.; Cui, Y. Hyperbranched lead selenide nanowire networks. Nano Lett.2007, 7, 1095–1099.

    Article  CAS  Google Scholar 

  21. Jiang, X. C.; Tian, B. Z.; Xiang, J.; Qian, F.; Zheng, G. F.; Wang, H. T.; Mai, L. Q.; Lieber, C. M. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc. Natl. Acad. Sci. USA2011, 108, 12212–12216.

    Article  CAS  Google Scholar 

  22. Plissard, S. R.; van Weperen, I.; Car, D.; Verheijen, M. A.; Immink, G. W. G.; Kammhuber, J.; Cornelissen, L. J.; Szombati, D. B.; Geresdi, A.; Frolov, S. M. et al. Formation and electronic properties of InSb nanocrosses. Nat. Nanotechnol.2013, 8, 859–864.

    Article  CAS  Google Scholar 

  23. Car, D.; Wang, J.; Verheijen, M. A.; Bakkers, E. P. A. M.; Plissard, S. R. Rationally designed single-crystalline nanowire networks. Adv. Mater.2014, 26, 4875–4879.

    Article  CAS  Google Scholar 

  24. Dalacu, D.; Kam, A.; Austing, D. G.; Poole, P. J. Droplet dynamics in controlled InAs nanowire interconnections. Nano Lett.2013, 13, 2676–2681.

    Article  CAS  Google Scholar 

  25. Rieger, T.; Rosenbach, D.; Vakulov, D.; Heedt, S.; Schäpers, T.; Grützmacher, D.; Lepsa, M. I. Crystal phase transformation in self-assembled InAs nanowire junctions on patterned Si substrates. Nano Lett.2016, 16, 1933–1941.

    Article  CAS  Google Scholar 

  26. Beaudry, A. L.; LaForge, J. M.; Tucker, R. T.; Sorge, J. B.; Adamski, N. L.; Li, P.; Taschuk, M. T.; Brett, M. J. Directed branch growth in aligned nanowire arrays. Nano Lett.2014, 14, 1797–1803.

    Article  CAS  Google Scholar 

  27. Celano, T. A.; Hill, D. J.; Zhang, X.; Pinion, C. W.; Christesen, J. D.; Flynn, C. J.; McBride, J. R.; Cahoon, J. F. Capillarity-driven welding of semiconductor nanowires for crystalline and electrically ohmic junctions. Nano Lett.2016, 16, 5241–5246.

    Article  CAS  Google Scholar 

  28. Gere, J. M.; Timoshenko, S. P. Mechanics of Materials; 4th ed. PWS Publish Company: Boston, 1997.

    Google Scholar 

  29. Tada, M.; Park, J. H.; Kuzum, D.; Thareja, G.; Jain, J. R.; Nishi, Y.; Saraswat, K. C. Low temperature germanium growth on silicon oxide using boron seed layer and in situ dopant activation. J. Electrochem. Soc.2010, 157, H371–H376.

    Article  CAS  Google Scholar 

  30. Cao, L. Y.; Fan, P. Y.; Barnard, E. S.; Brown, A. M.; Brongersma, M. L. Tuning the color of silicon nanostructures. Nano Lett.2010, 10, 2649–2654.

    Article  CAS  Google Scholar 

  31. Bao, H.; Zhang, W. X.; Chen, L. L.; Huang, H. X.; Yang, C.; Ruan, X. L. An investigation of the optical properties of disordered silicon nanowire mats. J. Appl. Phys.2012, 112, 124301.

    Article  CAS  Google Scholar 

  32. Holmberg, V. C.; Bogart, T. D.; Chockla, A. M.; Hessel, C. M.; Korgel, B. A. Optical properties of silicon and germanium nanowire fabric. J. Phys. Chem. C2012, 116, 22486–22491.

    Article  CAS  Google Scholar 

  33. Rosenkranz, R. Failure localization with active and passive voltage contrast in FIB and SEM. J. Mater. Sci.: Mater. Electron.2011, 22, 1523–1535.

    CAS  Google Scholar 

  34. Fairfield, J. A.; Ritter, C.; Bellew, A. T.; McCarthy, E. K.; Ferreira, M. S.; Boland, J. J. Effective electrode length enhances electrical activation of nanowire networks: Experiment and simulation. ACS Nano2014, 8, 9542–9549.

    Article  CAS  Google Scholar 

  35. Sabate, A. C.; Ismail, N.; Nordin, N. Innovative way of implementing active voltage contrast. In Proceedings of the 20th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, Suzhou, 2013, pp 132–135.

    Google Scholar 

  36. Nirmalraj, P. N.; Bellew, A. T.; Bell, A. P.; Fairfield, J. A.; McCarthy, E. K.; O’Kelly, C.; Pereira, L. F. C.; Sorel, S.; Morosan, D.; Coleman, J. N. et al. Manipulating connectivity and electrical conductivity in metallic nanowire networks. Nano Lett.2012, 12, 5966–5971.

    Article  CAS  Google Scholar 

  37. De, S.; King, P. J.; Lyons, P. E.; Khan, U.; Coleman, J. N. Size effects and the problem with percolation in nanostructured transparent conductors. ACS Nano2010, 4, 7064–7072.

    Article  CAS  Google Scholar 

  38. Balberg, I.; Binenbaum, N. Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks. Phys. Rev. B1983, 28, 3799–3812.

    Article  Google Scholar 

  39. Hu, L.; Hecht, D. S.; Grüner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett.2004, 4, 2513–2517.

    Article  CAS  Google Scholar 

  40. Yang, L. Q.; Zhang, T.; Zhou, H. X.; Price, S. C.; Wiley, B. J.; You, W. Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces2011, 3, 4075–4084.

    Article  CAS  Google Scholar 

  41. Xie, C.; Liu, J.; Fu, T. M.; Dai, X. C.; Zhou, W.; Lieber, C. M. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater.2015, 14, 1286–1292.

    Article  CAS  Google Scholar 

  42. Acarón Ledesma, H.; Li, X. J.; Carvalho-de-Souza, J. L.; Wei, W.; Bezanilla, F.; Tian, B. Z. An atlas of nano-enabled neural interfaces. Nat. Nanotechnol.2019, 14, 645–657.

    Article  CAS  Google Scholar 

  43. Thomas, A. Memristor-based neural networks. J. Phys. D: Appl. Phys.2013, 46, 093001.

    Article  CAS  Google Scholar 

  44. DeFelipe, J.; Marco, P.; Busturia, I.; Merchán-Pérez, A. Estimation of the number of synapses in the cerebral cortex: Methodological considerations. Cereb. Cortex1999, 9, 722–732.

    Article  CAS  Google Scholar 

  45. Pinion, C. W.; Nenon, D. P.; Christesen, J. D.; Cahoon, J. F. Identifying crystallization- and incorporation-limited regimes during vapor-liquid-solid growth of Si nanowires. ACS Nano2014, 8, 6081–6088.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (NSF) through grant DMR-1555001. S. K. acknowledges a Kwanjeong Scholarship, J. F. C. acknowledges a Packard Fellowship for Science and Engineering, and D. J. H. acknowledges an NSF graduate research fellowship. This work made use of instrumentation at the Chapel Hill Analytical and Nanofabrication Laboratory (CHANL), a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), which is supported by the NSF (No. ECCS-1542015) as part of the National Nanotechnology Coordinated Infrastructure (NNCI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Cahoon.

Additional information

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celano, T.A., Kim, S., Hill, D.J. et al. Semi-transparent, flexible, and electrically conductive silicon mesh by capillarity-driven welding of vapor-liquid-solid-grown nanowires over large areas. Nano Res. 13, 1465–1471 (2020). https://doi.org/10.1007/s12274-020-2742-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2742-8

Keywords

Navigation