Skip to main content
Log in

Reverse immune suppressive microenvironment in tumor draining lymph nodes to enhance anti-PD1 immunotherapy via nanovaccine complexed microneedle

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The maturation of dendritic cells (DCs) and infiltration effector T cells in tumor-draining lymph node (tdLN) and tumor tissue are crucial for immunotherapy. Despite constructive progresses have been made with anti-programmed death-1 (anti-PD1) checkpoint blockade for immunotherapy, the efficacy of PD1/PD-L1 therapy deserves to be improved. Here, we constructed a novel transfersomes based nanovaccine complexed microneedles to enhance anti-PD1 immunotherapy via transdermal immunization for skin tumor therapy. Transfersomes were functionalized with DCs targeting moiety αCD40, co-encapsulated with antigens and adjuvant poly I:C. Moreover, transdermal administration promoted accumulation in tumor-draining lymph nodes (tdLN), which could facilitate cellular uptake, activate DCs maturation and enhance Th1 immune responses. Using a mouse melanoma model, combined therapy of such nanovaccine complexed microneedles with pembrolizumab (αPD1) was able to enhance cytotoxic T lymphocytes activation, promote infiltration and reduce regulatory T cells frequency in tdLN and tumor tissues, which achieved reversion of the immunosuppressive microenvironment into immune activation. This study highlighted the potential of transfersomes based nanovaccines complexed microneedles as an attractive platform for tumor immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Releases2010, 148, 135–146.

    CAS  Google Scholar 

  2. Jeanbart, L.; Ballester, M.; de Titta, A.; Corthésy, P.; Romero, P.; Hubbell, J. A.; Swartz, M. A. Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes. Cancer Immunol. Res.2014, 2, 436–447.

    CAS  Google Scholar 

  3. Rahimian, S.; Kleinovink, J. W.; Fransen, M. F.; Mezzanotte, L.; Gold, H.; Wisse, P.; Overkleeft, H.; Amidi, M.; Jiskoot, W.; Löwik, C. W. et al. Near-infrared labeled, ovalbumin loaded polymeric nanoparticles based on a hydrophilic polyester as model vaccine: In vivo tracking and evaluation of antigen-specific CD8+ T cell immune response. Biomaterials2015, 37, 469–477.

    CAS  Google Scholar 

  4. Ye, Y. Q.; Wang, J. Q.; Hu, Q. Y.; Hochu, G M.; Xin, H. L.; Wang, C.; Gu, Z. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano2016, 10, 8956–8963.

    CAS  Google Scholar 

  5. Sharma, P.; Allison, J. P. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell2015, 161, 205–214.

    CAS  Google Scholar 

  6. Yang, Y. P. Cancer immunotherapy: Harnessing the immune system to battle cancer. J. Clin. Invest.2015, 125, 3335–3337.

    Google Scholar 

  7. Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J. J.; Cowey, C. L.; Lao, C. D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. ngl. J. Med.2015, 373, 23–34.

    Google Scholar 

  8. Wang, C.; Ye, Y. Q.; Hochu, G. M.; Sadeghifa, H.; Gu, Z. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of Anti-PD1 antibody. Nano Lett.2016, 16, 2334–2340.

    CAS  Google Scholar 

  9. Chandrasekaran, S.; King, M. Microenvironment of tumor-draining lymph nodes: Opportunities for liposome-based targeted therapy. Int. J. Mol. Sci.2014, 15, 20209–20239.

    Google Scholar 

  10. Fransen, M. F.; Arens, R.; Melief, C. J. M. Local targets for immune therapy to cancer: Tumor draining lymph nodes and tumor microenvironment. Int. J. Cancer2013, 132, 1971–1976.

    CAS  Google Scholar 

  11. de Wilt, J. H. W.; van Akkooi, A. C. J.; Verhoef, C.; Eggermont, A. M. M. Detection of melanoma micrometastases in sentinel nodes-The cons. Surg. Oncol.2008, 17, 175–181.

    Google Scholar 

  12. Tang, H. D.; Qiao, J.; Fu, Y. X. Immunotherapy and tumor microenvironment. Cancer Lett.2016, 370, 85–90.

    CAS  Google Scholar 

  13. Thomas, S. N.; Vokali, E.; Lund, A. W.; Hubbell, J. A.; Swartz, M. A. Targeting the tumor-draining lymph node with adjuvanted nano-particles reshapes the anti-tumor immune response. Biomaterials2014, 35, 814–824.

    CAS  Google Scholar 

  14. Malissen, B.; Tamoutounour, S.; Henri, S. The origins and functions of dendritic cells and macrophages in the skin. Nat. Rev. Immunol.2014, 14, 417–428.

    CAS  Google Scholar 

  15. Tacken, P. J.; Zeelenberg, I. S.; Cruz, L. J.; van Hout-Kuijer, M. A.; van de Glind, G.; Fokkink, R. G.; Lambeck, A. J. A.; Figdor, C. G. Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood2011, 118, 6836–6844.

    CAS  Google Scholar 

  16. Ye, Y. Q.; Wang, C.; Zhang, X. D.; Hu, Q. Y.; Zhang, Y. Q.; Liu, Q.; Wen, D.; Milligan, J.; Bellotti, A.; Huang, L. et al. A melanin-mediated cancer immunotherapy patch. Sci. Immunol.2017, 2, eaan5692.

    Google Scholar 

  17. Rahimian, S.; Fransen, M. F.; Kleinovink, J. W.; Amidi, M.; Ossendorp, F.; Hennink, W. E. Polymeric microparticles for sustained and local delivery of antiCD40 and antiCTLA-4 in immunotherapy of cancer. Biomaterials2015, 61, 33–40.

    CAS  Google Scholar 

  18. Rosalia, R. A.; Cruz, L. J.; van Duikeren, S.; Tromp, A. T.; Silva, A. L.; Jiskoot, W.; de Gruijl, T.; Löwik, C.; Oostendorp, J.; van der Burg, S. H. et al. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials2015, 40, 88–97.

    CAS  Google Scholar 

  19. Schjetne, K. W.; Fredriksen, A. B.; Bogen, B. Delivery of antigen to CD40 induces protective immune responses against tumors. J. Immunol.2007, 178, 4169–4176.

    CAS  Google Scholar 

  20. Takemura, R.; Takaki, H.; Okada, S.; Shime, H.; Akazawa, T.; Oshiumi, H.; Matsumoto, M.; Teshima, T.; Seya, T. PolyI:C-induced, TLR3/RIP3-dependent necroptosis backs up immune effector-mediated tumor elimination in vivo. Cancer Immunol. Res.2015, 3, 902–914.

    CAS  Google Scholar 

  21. Lau, W. H.; Zhu, X. G.; Ho, S. W. T.; Chang, S. C.; Ding, J. L. Combinatorial treatment with polyI:C and anti-IL6 enhances apoptosis and suppresses metastasis of lung cancer cells. Oncotarget2017, 8, 32884–32904.

    Google Scholar 

  22. Frank-Bertoncelj, M.; Pisetsky, D. S.; Kolling, C.; Michel, B. A.; Gay, R. E.; Jüngel, A.; Gay, S. TLR3 ligand poly(I:C) exerts distinct actions in synovial fibroblasts when delivered by extracellular vesicles. Front. Immunol.2018, 9, 28.

    Google Scholar 

  23. Kong, M.; Hou, L.; Wang, J.; Feng, C.; Liu, Y.; Cheng, X. J.; Chen, X. G. Enhanced transdermal lymphatic drug delivery of hyaluronic acid modified transfersomes for tumor metastasis therapy. Chem. Commun.2015, 51, 1453–1456.

    CAS  Google Scholar 

  24. Ma, G. J.; Wu, C. W. Microneedle, bio-microneedle and bio-inspired microneedle: Areview. J. Control. Release2017, 251, 11–23.

    CAS  Google Scholar 

  25. Hao, Y.; Li, W.; Zhou, X. L.; Yang, F.; Qian, Z. Y. Microneedles-based transdermal drug delivery systems: A review. J. Biomed. Nanotechnol.2017, 13, 1581–1597.

    CAS  Google Scholar 

  26. Chen, G. J.; Chen, Z. T.; Wen, D.; Wang, Z. J.; Li, H. J.; Zeng, Y.; Dotti, G.; Wirz, R. E.; Gu, Z. Transdermal cold atmospheric plasmamediated immune checkpoint blockade therapy. Proc. Natl. Acad. Sci. USA2020, 117, 3687–3692.

    CAS  Google Scholar 

  27. Ye, Y. Q.; Yu, J. C.; Wen, D.; Kahkoska, A. R.; Gu, Z. Polymeric microneedles for transdermal protein delivery. Adv. Drug Deliv. Rev.2018, 127, 106–118.

    CAS  Google Scholar 

  28. Yang, H. J.; Wu, X. J.; Zhou, Z. Z.; Chen, X. G.; Kong, M. Enhanced transdermal lymphatic delivery of doxorubicin via hyaluronic acid based transfersomes/microneedle complex for tumor metastasis therapy. Int. J. Biol. Macromol.2019, 125, 9–16.

    CAS  Google Scholar 

  29. Wu, X. J.; Li, Y.; Chen, X. G.; Zhou, Z. Z.; Pang, J. H.; Luo, X.; Kong, M. A surface charge dependent enhanced Th1 antigen-specific immune response in lymph nodes by transfersome-based nanovaccine-loaded dissolving microneedle-assisted transdermal immunization. J. Mater. Chem. B2019, 7, 4854–4866.

    CAS  Google Scholar 

  30. Kong, M.; Park, H. J. Stability investigation of hyaluronic acid based nanoemulsion and its potential as transdermal carrier. Carbohydr. Polym.2011, 83, 1303–1310.

    CAS  Google Scholar 

  31. Robert, C.; Schachter, J.; Long, G. V.; Arance, A.; Grob, J. J.; Mortier, L.; Daud, A.; Carlino, M. S.; Mcneil, C.; Lotem, M. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med.2015, 372, 2521–2532.

    CAS  Google Scholar 

  32. Kong, M.; Chen, X. G.; Park, H. Design and investigation of nanoemulsified carrier based on amphiphile-modified hyaluronic acid. Carbohydr. Polym.2011, 83, 462–469.

    CAS  Google Scholar 

  33. Sun, G. H.; Feng, C.; Jiang, C. Q.; Zhang, T. T.; Bao, Z. X.; Zuo, Y. J.; Kong, M.; Cheng, X. J.; Liu, Y.; Chen, X. G. Thermo-responsive hydroxybutyl chitosan hydrogel as artery intervention embolic agent for hemorrhage control. Int. J. Biol. Macromol.2017, 105, 566–574.

    CAS  Google Scholar 

  34. Rao, S. B.; Sharma, C. P. Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential. J. Biomed. Mater. Res.1997, 34, 21–28.

    CAS  Google Scholar 

  35. Joffre, O. P.; Segura, E.; Savina, A.; Amigorena, S. Cross-presentation by dendritic cells. Nat. Rev. Immunol.2012, 12, 557–569.

    CAS  Google Scholar 

  36. Higa, K.; Shimmura, S.; Shimazaki, J.; Tsubota, K. Hyaluronic acid-CD44 interaction mediates the adhesion of lymphocytes by amniotic membrane stroma. Cornea2005, 24, 206–212.

    Google Scholar 

  37. Kong, M.; Zuo, Y. J.; Wang, M.; Bai, X. Y.; Feng, C.; Chen, X. G. Simply constructed chitosan nanocarriers with precise spatiotemporal control for efficient intracellular drug delivery. Carbohydr. Polym.2017, 169, 341–350.

    CAS  Google Scholar 

  38. Nawwab Al-Deen, F. M.; Selomulya, C.; Kong, Y. Y.; Xiang, S. D.; Ma, C.; Coppel, R. L.; Plebanski, M. Design of magnetic polyplexes taken up efficiently by dendritic cell for enhanced DNA vaccine delivery. Gene Ther.2014, 21, 212–218.

    CAS  Google Scholar 

  39. Liu, L. X.; Cao, F. Q.; Liu, X. X.; Wang, H.; Zhang, C.; Sun, H. F.; Wang, C.; Leng, X. G.; Song, C. X.; Kong, D. L. et al. Hyaluronic acid-modified cationic lipid-PLGA hybrid nanoparticles as a nanovaccine induce robust humoral and cellular immune responses. ACSAppl. Mater. Interfaces2016, 8, 11969–11979.

    CAS  Google Scholar 

  40. Randolph, G. J.; Angeli, V.; Swartz, M. A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol.2005, 5, 617–628.

    CAS  Google Scholar 

  41. Habijanic, J.; Berovic, M.; Boh, B.; Plankl, M.; Wraber, B. Submerged cultivation of Ganoderma lucidum and the effects of its polysaccharides on the production of human cytokines TNF-α, IL-12, IFN-γ, IL-2, IL-4, IL-10 and IL-17. New Biotechnol.2015, 32, 85–95.

    CAS  Google Scholar 

  42. Kane, L. P.; Andres, P. G.; Howland, K. C.; Abbas, A. K.; Weiss, A. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not TH2 cytokines. Nat. Immunol.2001, 2, 37–44.

    CAS  Google Scholar 

  43. Hong, Y.; Manoharan, I.; Suryawanshi, A.; Majumdar, T.; Angus-Hill, M. L.; Koni, P. A.; Manicassamy, B.; Mellor, A. L.; Munn, D. H.; Manicassamy, S. β-catenin promotes regulatory T-cell responses in tumors by inducing vitamin A metabolism in dendritic cells. Cancer Res.2015, 75, 656–665.

    CAS  Google Scholar 

Download references

Acknowledgements

work was supported by the National Natural Science Foundation of China (No. 31670972), and the Taishan Scholar Program, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Kong.

Electronic Supplementary Material

12274_2020_2737_MOESM1_ESM.pdf

Reverse immune suppressive microenvironment in tumor draining lymph nodes to enhance anti-PD1 immunotherapy via nanovaccine complexed microneedle

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Pang, J., Wu, X. et al. Reverse immune suppressive microenvironment in tumor draining lymph nodes to enhance anti-PD1 immunotherapy via nanovaccine complexed microneedle. Nano Res. 13, 1509–1518 (2020). https://doi.org/10.1007/s12274-020-2737-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2737-5

Keywords

Navigation