Skip to main content
Log in

Three-dimensional fuzzy graphene ultra-microelectrodes for subcellular electrical recordings

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Microelectrode arrays (MEAs) have enabled investigation of cellular networks at sub-millisecond temporal resolution. However, current MEAs are limited by the large electrode footprint since reducing the electrode's geometric area to sub-cellular dimensions leads to a significant increase in impedance thus affecting its recording capabilities. We report a breakthrough ultra-microelectrodes platform by leveraging the outstanding surface-to-volume ratio of nanowire-templated out-of-plane synthesized three-dimensional fuzzy graphene (NT-3DFG). The enormous surface area of NT-3DFG leads to 140-fold reduction in electrode impedance compared to bare Au microelectrodes, thus enabling scaling down the geometric size by 625-fold to ca. 2 μm × 2 μm. The out-of-plane morphology of NT-3DFG leads to a tight seal with the cell membrane thus enabling recording of electrical signals with high signal-to-noise ratio (SNR) of > 6. This work highlights the possibility to push the limits of the conventional MEA technology to enable electrophysiological investigation at sub-cellular level without the need of any surface coatings. This presented approach would greatly impact our basic understanding of signal transduction within a single cell as well as complex cellular assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas, C. A. Jr; Springer, P. A.; Loeb, G. E.; Berwald-Netter, Y.; Okun, L. M. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp. Cell Res.1972, 74, 61–66.

    Article  Google Scholar 

  2. Spira, M. E.; Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol.2013, 8, 83–94.

    Article  CAS  Google Scholar 

  3. Rastogi, S. K.; Kalmykov, A.; Johnson, N.; Cohen-Karni, T. Bioelectronics with nanocarbons. J. Mater. Chem. B2018, 6, 7159–7178.

    Article  CAS  Google Scholar 

  4. Deku, F.; Ghazavi, A.; Cogan, S. F. Neural interfaces based on amorphous silicon carbide ultramicroelectrode arrays. Bioelectron. Med.2018, 1, 185–200.

    Article  Google Scholar 

  5. Kozai, T. D. Y.; Langhals, N. B.; Patel, P. R.; Deng, X. P.; Zhang, H. N.; Smith, K. L.; Lahann, J.; Kotov, N. A.; Kipke, D. R. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater.2012, 11, 1065–1073.

    Article  CAS  Google Scholar 

  6. Fu, T. M.; Hong, G. S.; Zhou, T.; Schuhmann, T. G.; Viveros, R. D.; Lieber, C. M. Stable long-term chronic brain mapping at the singleneuron level. Nat. Methods2016, 13, 875–882.

    Article  CAS  Google Scholar 

  7. Luan, L.; Wei, X. L.; Zhao, Z. T.; Siegel, J. J.; Potnis, O.; Tuppen, C. A.; Lin, S. Q.; Kazmi, S.; Fowler, R. A.; Holloway, S. et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Sci. Adv.2017, 3, e1601966.

    Article  CAS  Google Scholar 

  8. Marblestone, A. H.; Zamft, B. M.; Maguire, Y. G.; Shapiro, M. G.; Cybulski, T. R.; Glaser, J. I.; Amodei, D.; Stranges, P. B.; Kalhor, R.; Dalrymple, D. A. et al. Physical principles for scalable neural recording. Front. Comput. Neurosci.2013, 7, 137.

    Article  Google Scholar 

  9. Maher, M.; Pine, J.; Wright, J.; Tai, Y. C. The neurochip: A new multielectrode device for stimulating and recording from cultured neurons. J. Neurosci. Methods1999, 87, 45–56.

    Article  CAS  Google Scholar 

  10. Gabay, T.; Ben-David, M.; Kalifa, I.; Sorkin, R.; Ze’ev, R. A.; Ben-Jacob, E.; Hanein, Y. Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays. Nanotechnology2007, 18, 035201.

    Article  CAS  Google Scholar 

  11. Meyer, R. D.; Cogan, S. F.; Nguyen, T. H.; Rauh, R. D. Electrodeposited iridium oxide for neural stimulation and recording electrodes. IEEE Trans. Neural Syst. Rehabil. Eng.2001, 9, 2–11.

    Article  CAS  Google Scholar 

  12. Cui, X. Y.; Lee, V. A.; Raphael, Y.; Wiler, J. A.; Hetke, J. F.; Anderson, D. J.; Martin, D. C. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J. Biomed. Mater. Res.2001, 56, 261–272.

    Article  CAS  Google Scholar 

  13. Scanziani, M.; Häusser, M. Electrophysiology in the age of light. Nature2009, 461, 930–939.

    Article  CAS  Google Scholar 

  14. Cogan, S. F.; Guzelian, A. A.; Agnew, W. F.; Yuen, T. G.; McCreery, D. B. Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation. J. Neurosci. Methods2004, 137, 141–150.

    Article  CAS  Google Scholar 

  15. Lu, Y. C.; Lyu, H.; Richardson, A. G.; Lucas, T. H.; Kuzum, D. Flexible neural electrode array based-on porous graphene for cortical microstimulation and sensing. Sci. Rep.2016, 6, 33526.

    Article  CAS  Google Scholar 

  16. Rastogi, S. K.; Bliley, J.; Shiwarski, D. J.; Raghavan, G.; Feinberg, A. W.; Cohen-Karni, T. Graphene microelectrode arrays for electrical and optical measurements of human stem cell-derived cardiomyocytes. Cell. Mol. Bioeng.2018, 11, 407–418.

    Article  CAS  Google Scholar 

  17. Garg, R.; Rastogi, S. K.; Lamparski, M.; de la Barrera, S. C.; Pace, G. T.; Nuhfer, N. T.; Hunt, B. M.; Meunier, V.; Cohen- Karni, T. Nanowire-mesh-templated growth of out-of-plane three-dimensional fuzzy graphene. ACS Nano2017, 11, 6301–6311.

    Article  CAS  Google Scholar 

  18. Chen, G. K.; Gulbranson, D. R.; Hou, Z. G.; Bolin, J. M.; Ruotti, V.; Probasco, M. D.; Smuga-Otto, K.; Howden, S. E.; Diol, N. R.; Propson, N. E. et al. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods2011, 8, 424–429.

    Article  CAS  Google Scholar 

  19. Lian, X. J.; Zhang, J. H.; Azarin, S. M.; Zhu, K. X.; Hazeltine, L. B.; Bao, X. P.; Hsiao, C.; Kamp, T. J.; Palecek, S. P. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/ß-catenin signaling under fully defined conditions. Nat. Protoc.2013, 8, 162–175.

    Article  CAS  Google Scholar 

  20. Burridge, P. W.; Matsa, E.; Shukla, P.; Lin, Z. C.; Churko, J. M.; Ebert, A. D.; Lan, F.; Diecke, S.; Huber, B.; Mordwinkin, N. M. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods2014, 11, 855–860.

    Article  CAS  Google Scholar 

  21. Tohyama, S.; Hattori, F.; Sano, M.; Hishiki, T.; Nagahata, Y.; Matsuura, T.; Hashimoto, H.; Suzuki, T.; Yamashita, H.; Satoh, Y. et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell2013, 12, 127–137.

    Article  CAS  Google Scholar 

  22. Rastogi, S. K.; Raghavan, G.; Yang, G.; Cohen-Karni, T. Effect of graphene on nonneuronal and neuronal cell viability and stress. Nano Lett.2017, 17, 3297–3301.

    Article  CAS  Google Scholar 

  23. Kovács, M.; Tóth, J.; Hetényi, C.; Málnási-Csizmadia, A.; Sellers, J. R. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem.2004, 279, 35557–35563.

    Article  CAS  Google Scholar 

  24. Li, X.; Matino, L.; Zhang, W.; Klausen, L.; McGuire, A. F.; Lubrano, C.; Zhao, W. T.; Santoro, F.; Cui, B. X. A nanostructure platform for live-cell manipulation of membrane curvature. Nat. Protoc.2019, 14, 1772–1802.

    Article  CAS  Google Scholar 

  25. Santoro, F.; Zhao, W. T.; Joubert, L. M.; Duan, L. T.; Schnitker, J.; van de Burgt, Y.; Lou, H. Y.; Liu, B. F.; Salleo, A.; Cui, L. F. et al. Revealing the cell-material interface with nanometer resolution by focused ion beam/scanning electron microscopy. ACS Nano2017, 11, 8320–8328.

    Article  CAS  Google Scholar 

  26. Smith, S. W. The Scientist and Engineer’s Guide to Digital Signal Processing; California Technical Pub: California, 1997.

    Google Scholar 

  27. Noda, T.; Noda, Y.; Chen, P. C.; Haruta, M.; Sasagawa, K.; Tokuda, T.; Wu, C. Y.; Ohta, J. Electrochemical evaluation of geometrical effect and three-dimensionalized effect of iridium oxide electrodes used for retinal stimulation. Sens. Mater.2018, 30, 213–224.

    CAS  Google Scholar 

  28. Weiland, J. D.; Anderson, D. J.; Humayun, M. S. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans. Biomed. Eng.2002, 49, 1574–1579.

    Article  Google Scholar 

  29. Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng.2008, 10, 275–309.

    Article  CAS  Google Scholar 

  30. Rastogi, S. K.; Cohen-Karni, T. Nanoelectronics for neuroscience. In Encyclopedia of Biomedical Engineering. Narayan, R.; Elsevier: Amsterdam, 2019.

    Google Scholar 

  31. Kuzum, D.; Takano, H.; Shim, E.; Reed, J. C.; Juul, H.; Richardson, A. G.; de Vries, J.; Bink, H.; Dichter, M. A.; Lucas, T. H. et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat. Commun.2014, 5, 5259.

    Article  CAS  Google Scholar 

  32. Ganji, M.; Kaestner, E.; Hermiz, J.; Rogers, N.; Tanaka, A.; Cleary, D.; Lee, S. H.; Snider, J.; Halgren, M.; Cosgrove, G. R. et al. Development and translation of PEDOT: PSS microelectrodes for intraoperative monitoring. Adv. Funct. Mater.2018, 28, 1700232.

    Article  CAS  Google Scholar 

  33. Navarrete, E. G.; Liang, P.; Lan, F.; Sanchez-Freire, V.; Simmons, C.; Gong, T. Y.; Sharma, A.; Burridge, P. W.; Patlolla, B.; Lee, A. S. et al. Screening drug-induced arrhythmia using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays. Circulation2013, 128, S3–S13.

    Article  CAS  Google Scholar 

  34. Yang, X.; Zhou, T.; Zwang, T. J.; Hong, G. S.; Zhao, Y. L.; Viveros, R. D.; Fu, T. M.; Gao, T.; Lieber, C. M. Bioinspired neuron-like electronics. Nat. Mater.2019, 18, 510–517.

    Article  CAS  Google Scholar 

  35. Xie, C.; Liu, J.; Fu, T. M.; Dai, X. C.; Zhou, W.; Lieber, C. M. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater.2015, 14, 1286–1292.

    Article  CAS  Google Scholar 

  36. Viswam, V.; Obien, M. E. J.; Franke, F.; Frey, U.; Hierlemann, A. Optimal electrode size for multi-scale extracellular-potential recording from neuronal assemblies. Front. Neurosci.2019, 13, 385.

    Article  Google Scholar 

  37. Perry, S. W.; Norman, J. P.; Barbieri, J.; Brown, E. B.; Gelbard, H. A. Mitochondrial membrane potential probes and the proton gradient: A practical usage guide. Biotechniques2011, 50, 98–115.

    Article  CAS  Google Scholar 

  38. Kroemer, G.; Galluzzi, L.; Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev.2007, 87, 99–163.

    Article  CAS  Google Scholar 

  39. Karbowski, M.; Youle, R. J. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ.2003, 10, 870–880.

    Article  CAS  Google Scholar 

  40. Hai, A.; Dormann, A.; Shappir, J.; Yitzchaik, S.; Bartic, C.; Borghs, G.; Langedijk, J. P. M.; Spira, M. E. Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices. J. R. Soc. Interface2009, 6, 1153–1165.

    Article  CAS  Google Scholar 

  41. Dipalo, M.; McGuire, A. F.; Lou, H. Y.; Caprettini, V.; Melle, G.; Bruno, G.; Lubrano, C.; Matino, L.; Li, X.; De Angelis, F. et al. Cells adhering to 3D vertical nanostructures: Cell membrane reshaping without stable internalization. Nano Lett.2018, 18, 6100–6105.

    Article  CAS  Google Scholar 

  42. Clements, M.; Thomas, N. High-throughput multi-parameter profiling of electrophysiological drug effects in human embryonic stem cell derived cardiomyocytes using multi-electrode arrays. Toxicol. Sci.2014, 140, 445–461.

    Article  CAS  Google Scholar 

  43. Cohen-Karni, T.; Casanova, D.; Cahoon, J. F.; Qing, Q.; Bell, D. C.; Lieber, C. M. Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. Nano Lett.2012, 12, 2639–2644.

    Article  CAS  Google Scholar 

  44. Cohen-Karni, T.; Qing, Q.; Li, Q.; Fang, Y.; Lieber, C. M. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett.2010, 10, 1098–1102.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T. C.-K. acknowledges funding support from the National Science Foundation under Award No. CBET1552833 and the Office of Naval Research under Award No. N000141712368. J. B. and A. W. F. acknowledge financial support from the Dowd Fellowship from the College of Engineering at Carnegie Mellon University. L. M. and F. S. acknowledge Valentina Mollo for ssthe preparation of SEM/FIB samples. We also acknowledge support from the Department of Materials Science and Engineering Materials Characterization Facility (MCF-677785).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzahi Cohen-Karni.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastogi, S.K., Bliley, J., Matino, L. et al. Three-dimensional fuzzy graphene ultra-microelectrodes for subcellular electrical recordings. Nano Res. 13, 1444–1452 (2020). https://doi.org/10.1007/s12274-020-2695-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2695-y

Keywords

Navigation