Skip to main content
Log in

Synergy between thermal and nonthermal effects in plasmonic photocatalysis

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Plasmonic photocatalysis represents the synergetic union of two active fields of research: plasmonic effects in illuminated metallic nanoparticles and catalytic effects in tailored metallic nanoparticles. Traditionally, metallic nanoparticles that excel for one application are limited for the other, but recent developments have shown that desirable catalytic behaviors, such as reduced activation barriers and improved product selectivity, derive from nonthermal behaviors uniquely produced by this synergy. After examining such findings, this review will address a specific debate that has recently surfaced: what is the relative degree of contributions of thermal and nonthermal effects in plasmonic photocatalysis? We demonstrate the importance of correctly accounting for thermal effects before characterizing nonthermal contributions. We show that another synergy occurs: these desirable nonthermal behaviors have a temperature dependence, and the resulting temperature-dependent reaction rates far exceed what can be explained from purely thermal effects alone. Thus, the synergy of plasmonic photocatalysis offers an exciting new contribution to the quest for efficient, selective, sustainable methods for chemical synthesis and energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem.2007, 58, 267–297.

    Article  CAS  Google Scholar 

  2. Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev.2008, 37, 898–911.

    Article  CAS  Google Scholar 

  3. Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater.2011, 10, 911–921.

    Article  CAS  Google Scholar 

  4. Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Photodetection with active optical antennas. Science2011, 332, 702–704.

    Article  CAS  Google Scholar 

  5. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics2014, 8, 95–103.

    Article  CAS  Google Scholar 

  6. Aslam, U.; Rao, V. G.; Chavez, S.; Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal.2018, 1, 656–665.

    Article  Google Scholar 

  7. Sarina, S.; Jaatinen, E.; Xiao, Q.; Huang, Y. M.; Christopher, P.; Zhao, J. C.; Zhu, H. Y. Photon energy threshold in direct photocatalysis with metal nanoparticles: Key evidence from the action spectrum of the reaction. J. Phys. Chem. Lett.2017, 8, 2526–2534.

    Article  CAS  Google Scholar 

  8. Zhao, J.; Nguyen, S. C.; Ye, R.; Ye, B. H.; Weller, H.; Somorjai, G. A.; Alivisatos, A. P.; Toste, F. D. A comparison of photocatalytic activities of gold nanoparticles following plasmonic and interband excitation and a strategy for harnessing interband hot carriers for solution phase photocatalysis. ACS Cent. Sci.2017, 3, 482–488.

    Article  CAS  Google Scholar 

  9. Pakizeh, T. Optical absorption of nanoparticles described by an electronic local interband transition. J. Opt.2013, 15, 025001.

    Article  CAS  Google Scholar 

  10. Baffou, G.; Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev. 2014, 43, 3898–3907.

    Article  CAS  Google Scholar 

  11. Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater.2015, 14, 567–576.

    Article  CAS  Google Scholar 

  12. Kale, M. J.; Avanesian, T.; Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal.2014, 4, 116–128.

    Article  CAS  Google Scholar 

  13. Maier, S. A.; Atwater, H. A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys.2005, 98, 011101.

  14. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol.2015, 10, 25–34.

    Article  CAS  Google Scholar 

  15. Christopher, P.; Xin, H. L.; Marimuthu, A.; Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater.2012, 11, 1044–1050.

    Article  CAS  Google Scholar 

  16. Yang, J. H.; Guo, Y. Z.; Lu, W. Z.; Jiang, R. B.; Wang, J. F. Emerging applications of plasmons in driving CO2 reduction and N2 fixation. Adv. Mater.2018, 30, 1802227.

  17. Sutter, P.; Li, Y.; Argyropoulos, C.; Sutter, E. In situ electron microscopy of plasmon-mediated nanocrystal synthesis. J. Am. Chem. Soc. 2017, 139, 6771–6776.

    Article  CAS  Google Scholar 

  18. Cao, L. Y.; Barsic, D. N.; Guichard, A. R.; Brongersma, M. L. Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett.2007, 7, 3523–3527.

    Article  CAS  Google Scholar 

  19. Robert, H. M. L.; Kundrat, F.; Bermúdez-Ureña, E.; Rigneault, H.; Monneret, S.; Quidant, R.; Polleux, J.; Baffou, G. Light-assisted solvothermal chemistry using plasmonic nanoparticles. ACS Omega2016, 1, 2–8.

    Article  CAS  Google Scholar 

  20. Kamarudheen, R.; Castellanos, G. W.; Kamp, L. P. J.; Clercx, H. J. H.; Baldi, A. Quantifying photothermal and hot charge carrier effects in plasmon-driven nanoparticle syntheses. ACS Nano2018, 12, 8447–8455.

    Article  CAS  Google Scholar 

  21. Govorov, A. O.; Richardson, H. H. Generating heat with metal nanoparticles. Nano Today2007, 2, 30–38.

    Article  Google Scholar 

  22. Ahmad, M.; Anguita, J. V.; Stolojan, V.; Carey, J. D.; Silva, S. R. Efficient coupling of optical energy for rapid catalyzed nanomaterial growth: High-quality carbon nanotube synthesis at low substrate temperatures. ACS Appl. Mater. Interfaces2013, 5, 3861–3866. [23] Qiu, J. J.; Wei, W. D. Surface plasmon-mediated photothermal chemistry. J. Phys. Chem. C2014, 118, 20735–20749.

    Article  CAS  Google Scholar 

  23. Richardson, H. H.; Carlson, M. T.; Tandler, P. J.; Hernandez, P.; Govorov, A. O. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett.2009, 9, 1139–1146.

    Article  CAS  Google Scholar 

  24. Wang, F. F.; Huang, Y. J.; Chai, Z. G.; Zeng, M.; Li, Q.; Wang, Y.; Xu, D. S. Photothermal-enhanced catalysis in core-shell plasmonic hierarchical Cu7S4 microsphere@zeolitic imidazole framework-8. Chem. Sci.2016, 7, 6887–6893.

    Article  CAS  Google Scholar 

  25. Wang, S. S.; Hu, W. C.; Liu, F. F.; Xu, Q. Y.; Wang, C. Insights into direct plasmon-activated eletrocatalysis on gold nanostar via efficient photothermal effect and reduced activation energy. Electrochim. Acta2019, 301, 359–365.

    Article  CAS  Google Scholar 

  26. Zhou, Y.; Doronkin, D. E.; Zhao, Z. Y.; Plessow, P. N.; Jelic, J.; Detlefs, B.; Pruessmann, T.; Studt, F.; Grunwaldt, J. D. Photothermal catalysis over nonplasmonic Pt/TiO2 studied by operando HERFD-XANES, resonant XES, and DRIFTS. ACS Catal.2018, 12, 11398–11406.

    Article  CAS  Google Scholar 

  27. Christopher, P.; Xin, H. L.; Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem.2011, 3, 467–472.

    Article  CAS  Google Scholar 

  28. Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett.2013, 13, 240–247.

    Article  CAS  Google Scholar 

  29. Mukherjee, S.; Zhou, L. N.; Goodman, A. M.; Large, N.; Ayala-Orozco, C.; Zhang, Y.; Nordlander, P.; Halas, N. J. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc.2014, 136, 64–67.

    Article  CAS  Google Scholar 

  30. Wu, B. H.; Lee, J.; Mubeen, S.; Jun, Y. S.; Stucky, G. D.; Moskovits, M. Plasmon-mediated photocatalytic decomposition of formic acid on palladium nanostructures. Adv. Opt. Mater.2016, 4, 1041–1046.

    Article  CAS  Google Scholar 

  31. Nørskov, J. K.; Studt, F.; Abild-Pedersen, F.; Bligaard, T. Fundamental Concepts in Heterogeneous Catalysis; John Wiley & Sons, Inc.: New York, 2014.

  32. Tana, T.; Guo, X. W.; Xiao, Q.; Huang, Y. M.; Sarina, S.; Christopher, P.; Jia, J. F.; Wu, H. S.; Zhu, H. Y. Non-plasmonic metal nanoparticles as visible light photocatalysts for the selective oxidation of aliphatic alcohols with molecular oxygen at near ambient conditions. Chem. Commun. (Camb.) 2016, 52, 11567–11570.

    Article  CAS  Google Scholar 

  33. Chavez, S.; Rao, V. G.; Linic, S. Unearthing the factors governing site specific rates of electronic excitations in multicomponent plasmonic systems and catalysts. Faraday Discuss.2019, 214, 441–453.

    Article  CAS  Google Scholar 

  34. Peng, T. H.; Miao, J. J.; Gao, Z. S.; Zhang, L. J.; Gao, Y.; Fan, C. H.; Li, D. Reactivating catalytic surface: Insights into the role of hot holes in plasmonic catalysis. Small2018, 14, e1703510.

    Article  CAS  Google Scholar 

  35. Watanabe, K.; Menzel, D.; Nilius, N.; Freund, H. J. Photochemistry on metal nanoparticles. Chem. Rev.2006, 106, 4301–4320.

    Article  CAS  Google Scholar 

  36. Wang, J.; Ando, R. A.; Camargo, P. H. C. Controlling the selectivity of the surface plasmon resonance mediated oxidation of p-aminothiophenol on au nanoparticles by charge transfer from UV-excited TiO2. Angew. Chem., Int. Ed.2015, 54, 6909–6912.

    Article  CAS  Google Scholar 

  37. DuChene, J. S.; Tagliabue, G.; Welch, A. J.; Cheng, W. H.; Atwater, H. A. Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes. Nano Lett.2018, 18, 2545–2550.

    Article  CAS  Google Scholar 

  38. Sivan, Y.; Chu, S. W. Nonlinear plasmonics at high temperatures. Nanophotonics2017, 6, 317–328.

    Article  CAS  Google Scholar 

  39. Sivan, Y.; Un, I. W.; Dubi, Y. Assistance of metal nanoparticles in photocatalysis-nothing more than a classical heat source. Faraday Discuss.2019, 214, 215–233.

    Article  CAS  Google Scholar 

  40. Boltersdorf, J.; Forcherio, G. T.; McClure, J. P.; Baker, D. R.; Leff, A. C.; Lundgren, C. Visible light-promoted plasmon resonance to induce “hot” hole transfer and photothermal conversion for catalytic oxidation. J. Phys. Chem. C2018, 122, 28934–28948.

    Article  CAS  Google Scholar 

  41. Christopher, P.; Linic, S. Shape- and size-specific chemistry of ag nanostructures in catalytic ethylene epoxidation. ChemCatChem2010, 2, 78–83.

    Article  CAS  Google Scholar 

  42. Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science2012, 336, 893–897.

    Article  CAS  Google Scholar 

  43. Grabow, L. C.; Mavrikakis, M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal.2011, 1, 365–384.

    Article  CAS  Google Scholar 

  44. Zhang, W. B.; Wang, L. B.; Wang, K. W.; Khan, M. U.; Wang, M. L.; Li, H. L.; Zeng, J. Integration of photothermal effect and heat insulation to efficiently reduce reaction temperature of CO2 hydrogenation. Small2017, 13, 1602583.

    Article  CAS  Google Scholar 

  45. Yang, Q.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem., Int. Ed.2016, 55, 3685–3689.

    Article  CAS  Google Scholar 

  46. Robatjazi, H.; Weinberg, D.; Swearer, D. F.; Jacobson, C.; Zhang, M.; Tian, S.; Zhou, L. N.; Nordlander, P.; Halas, N. J. Metal-organic frameworks tailor the properties of aluminum nanocrystals. Sci. Adv.2019, 5, eaav5340.

    Article  CAS  Google Scholar 

  47. Cui, J. B.; Li, Y. J.; Liu, L.; Chen, L.; Xu, J.; Ma, J. W.; Fang, G.; Zhu, E. B.; Wu, H.; Zhao, L. X. et al. Near-infrared plasmonicenhanced solar energy harvest for highly efficient photocatalytic reactions. Nano Lett.2015, 15, 6295–6301.

    Article  CAS  Google Scholar 

  48. Lee, J. E.; Mota, F. M.; Choi, C. H.; Lu, Y. R.; Boppella, R.; Dong, C. L.; Liu, R. S.; Kim, D. H. Plasmon-enhanced electrocatalytic properties of rationally designed hybrid nanostructures at a catalytic interface. Adv. Mater.2019, 6, 1801144.

    Article  CAS  Google Scholar 

  49. Lim, D. K.; Barhoumi, A.; Wylie, R. G.; Reznor, G.; Langer, R. S.; Kohane, D. S. Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide. Nano Lett.2013, 13, 4075–4079.

    Article  CAS  Google Scholar 

  50. Kumar, D.; Lee, A.; Lee, T.; Lim, M.; Lim, D. K. Ultrafast and efficient transport of hot plasmonic electrons by graphene for Pt free, highly efficient visible-light responsive photocatalyst. Nano Lett.2016, 16, 1760–1767.

  51. Guo, J.; Zhang, Y.; Shi, L.; Zhu, Y. F.; Mideksa, M. F.; Hou, K.; Zhao, W. S.; Wang, D. W.; Zhao, M. T.; Zhang, X. F. et al. Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis. J. Am. Chem. Soc.2017, 139, 17964–17972.

    Article  CAS  Google Scholar 

  52. Salmon-Gamboa, J. U.; Romero-Gómez, M.; Roth, D. J.; Barber, M. J.; Wang, P.; Fairclough, S. M.; Nasir, M. E.; Krasavin, A. V.; Dickson, W.; Zayats, A. V. Optimizing hot carrier effects in Pt-decorated plasmonic heterostructures. Faraday Discuss.2019, 214, 287–397.

    Article  Google Scholar 

  53. Zhao, H. L.; Zheng, X. Y.; Feng, X. H.; Li, Y. CO2 Reduction by plasmonic au nanoparticle-decorated TiO2 photocatalyst with an ultrathin Al2O3 interlayer. J. Phys. Chem. C2018, 122, 18949–18956.

  54. Choi, H.; Chen, W. T.; Kamat, P. V. Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. ACS Nano2012, 6, 4418–4427.

    Article  CAS  Google Scholar 

  55. Tahir, M.; Tahir, B.; Saidina Amin, N. A.; Zakaria, Z. Y. Photo-induced reduction of CO2 to CO with hydrogen over plasmonic Ag-NPs/TiO2 NWs core/shell hetero-junction under UV and visible light. J. CO2Util.2017, 18, 250–260.

  56. Kim, C.; Suh, B. L.; Yun, H.; Kim, J.; Lee, H. Surface plasmon aided ethanol dehydrogenation using Ag-Ni binary nanoparticles. ACS Catal.2017, 7, 2294–2302.

    Article  CAS  Google Scholar 

  57. Robatjazi, H.; Zhao, H. Q.; Swearer, D. F.; Hogan, N. J.; Zhou, L. N.; Alabastri, A.; McClain, M. J.; Nordlander, P.; Halas, N. J. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat. Commun.2017, 8, 27.

  58. Tada, S.; Watanabe, F.; Kiyota, K.; Shimoda, N.; Hayashi, R.; Takahashi, M.; Nariyuki, A.; Igarashi, A.; Satokawa, S. Ag addition to CuO-ZrO2 catalysts promotes methanol synthesis via CO2 hydrogenation. J. Catal.2017, 351, 107–118.

    Article  CAS  Google Scholar 

  59. Rani, S.; Bao, N. Z.; Roy, S. C. Solar spectrum photocatalytic conversion of CO2 and water vapor into hydrocarbons using TiO2 nanoparticle membranes. Appl. Surf. Sci.2014, 289, 203–208.

  60. Xu, Z. H.; Kibria, M. G.; AlOtaibi, B.; Duchesne, P. N.; Besteiro, L. V.; Gao, Y.; Zhang, Q. Z.; Mi, Z. T.; Zhang, P.; Govorov, A. O. et al. Towards enhancing photocatalytic hydrogen generation: Which is more important, alloy synergistic effect or plasmonic effect? Appl. Catal. B Environ.2018, 221, 77–85.

    Article  CAS  Google Scholar 

  61. Stanley, J. N. G.; García-García, I.; Perfrement, T.; Lovell, E. C.; Schmidt, T. W.; Scott, J.; Amal, R. Plasmonic effects on CO2 reduction over bimetallic Ni-Au catalysts. Chem. Eng. Sci.2019, 194, 94–104.

    Article  CAS  Google Scholar 

  62. Swearer, D. F.; Leary, R. K.; Newell, R.; Yazdi, S.; Robatjazi, H.; Zhang, Y.; Renard, D.; Nordlander, P.; Midgley, P. A.; Halas, N. J. et al. Transition-metal decorated aluminum nanocrystals. ACS Nano2017, 11, 10281–10288.

    Article  CAS  Google Scholar 

  63. Swearer, D. F.; Zhao, H. Q.; Zhou, L. N.; Zhang, C.; Robatjazi, H.; Martirez, J. M. P.; Krauter, C. M.; Yazdi, S.; McClain, M. J.; Ringe, E. et al. Heterometallic antenna-reactor complexes for photocatalysis. Proc. Natl. Acad. Sci. USA.2016, 113, 8916–8920.

    Article  CAS  Google Scholar 

  64. Zhou, L. N.; Swearer, D. F.; Zhang, C.; Robatjazi, H.; Zhao, H. Q.; Henderson, L.; Dong, L. L.; Christopher, P.; Carter, E. A.; Nordlander, P. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science2018, 362, 69–72.

    Article  CAS  Google Scholar 

  65. Keller, E. L.; Kang, H.; Haynes, C. L.; Frontiera, R. R. Effect of silica supports on plasmonic heating of molecular adsorbates as measured by ultrafast surface-enhanced Raman thermometry. ACS Appl. Mater. Interfaces2018, 10, 40577–40584.

    Article  CAS  Google Scholar 

  66. Gutierrez, Y.; Ortiz, D.; Sanz, J. M.; Saiz, J. M.; Gonzalez, F.; Everitt, H. O.; Moreno, F. How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures. Opt. Express2016, 24, 20621–20631.

    Article  Google Scholar 

  67. Mankidy, B. D.; Joseph, B.; Gupta, V. K. Photo-conversion of CO2 using titanium dioxide: Enhancements by plasmonic and co-catalytic nanoparticles. Nanotechnology2013, 24, 405402.

    Article  CAS  Google Scholar 

  68. Kazuma, E.; Jung, J.; Ueba, H.; Trenary, M.; Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science2018, 360, 521–526.

    Article  CAS  Google Scholar 

  69. Lin, C. F.; Ikeda, K.; Shiota, Y.; Yoshizawa, K.; Kumagai, T. Realspace observation of far- and near-field-induced photolysis of molecular oxygen on an Ag(110) surface by visible light. J. Chem. Phys.2019, 151, 144705.

    Article  CAS  Google Scholar 

  70. Seemala, B.; Therrien, A. J.; Lou, M. H.; Li, K.; Finzel, J. P.; Qi, J.; Nordlander, P.; Christopher, P. Plasmon-mediated catalytic O2 dissociation on Ag nanostructures: Hot electrons or near fields? ACS Energy Lett.2019, 4, 1803–1809.

    Article  CAS  Google Scholar 

  71. Pensa, E.; Gargiulo, J.; Lauri, A.; Schlücker, S.; Cortés, E.; Maier, S. A. Spectral screening of the energy of hot holes over a particle plasmon resonance. Nano Lett.2019, 19, 1867–1874.

    Article  CAS  Google Scholar 

  72. Zhan, C.; Liu, B. W.; Huang, Y. F.; Hu, S.; Ren, B.; Moskovits, M.; Tian, Z. Q. Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. Nat. Commun.2019, 10, 2671.

  73. Tesema, T. E.; Kafle, B.; Habteyes, T. G. Plasmon-driven reaction mechanisms: Hot electron transfer versus plasmon-pumped adsorbate excitation. J. Phys. Chem. C2019, 123, 8469–8483.

    Article  CAS  Google Scholar 

  74. Yu, Y.; Sundaresan, V.; Willets, K. A. Hot carriers versus thermal effects: Resolving the enhancement mechanisms for plasmon-mediated photoelectrochemical reactions. J. Phys. Chem. C2018, 122, 5040–5048.

  75. Huang, H.; Zhang, L.; Lv, Z. H.; Long, R.; Zhang, C.; Lin, Y.; Wei, K. C.; Wang, C. M.; Chen, L.; Li, Z. Y. et al. Unraveling surface plasmon decay in core-shell nanostructures toward broadband light-driven catalytic organic synthesis. J. Am. Chem. Soc.2016, 138, 6822–6828.

    Article  CAS  Google Scholar 

  76. Vadai, M.; Angell, D. K.; Hayee, F.; Sytwu, K.; Dionne, J. A. In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles. Nat. Commun.2018, 9, 4658.

  77. Yu, Y.; Wijesekara, K. D.; Xi, X. X.; Willets, K. A. Quantifying wavelength-dependent plasmonic hot carrier energy distributions at metal/semiconductor interfaces. ACS Nano2019, 13, 3629–3637.

    Article  CAS  Google Scholar 

  78. Li, X. Q.; Zhang, X.; Everitt, H. O.; Liu, J. Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production. Nano Lett.2019, 19, 1706–1711.

    Article  CAS  Google Scholar 

  79. Zhang, X.; Li, X. Q.; Zhang, D.; Su, N. Q.; Yang, W. T.; Everitt, H. O.; Liu, J. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun.2017, 8, 14542.

  80. Li, X. Q.; Everitt, H. O.; Liu, J. Confirming nonthermal plasmonic effects enhance CO2 methanation on Rh/TiO2 catalysts. Nano Res.2019, 12, 1906–1911.

    Article  CAS  Google Scholar 

  81. Zhang, X.; Li, X. Q.; Reish, M. E.; Zhang, D.; Su, N. Q.; Gutiérrez, Y.; Moreno, F.; Yang, W. T.; Everitt, H. O.; Liu, J. Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects. Nano Lett.2018, 18, 1714–1723.

    Article  CAS  Google Scholar 

  82. Song, H.; Meng, X. G.; Wang, Z. J.; Wang, Z.; Chen, H. L.; Weng, Y. X.; Ichihara, F.; Oshikiri, M.; Kako, T.; Ye, J. H. Visible-light-mediated methane activation for steam methane reforming under mild conditions: A case study of Rh/TiO2 catalysts. ACS Catal.2018, 8, 7556–7565.

    Article  CAS  Google Scholar 

  83. Li, K.; Hogan, N. J.; Kale, M. J.; Halas, N. J.; Nordlander, P.; Christopher, P. Balancing near-field enhancement, absorption, and scattering for effective antenna-reactor plasmonic photocatalysis. Nano Lett.2017, 17, 3710–3717.

    Article  CAS  Google Scholar 

  84. Szczerbinski, J.; Gyr, L.; Kaeslin, J.; Zenobi, R. Plasmon-driven photocatalysis leads to products known from E-beam and X-ray-induced surface chemistry. Nano Lett.2018, 18, 6740–6749.

    Article  CAS  Google Scholar 

  85. Pozzi, E. A.; Zrimsek, A. B.; Lethiec, C. M.; Schatz, G. C.; Hersam, M. C.; Van Duyne, R. P. Evaluating single-molecule stokes and anti-Stokes SERS for nanoscale thermometry. J. Phys. Chem. C2015, 119, 21116–21124.

    Article  CAS  Google Scholar 

  86. Kumari, G.; Zhang, X. Q.; Devasia, D.; Heo, J.; Jain, P. K. Watching visible light-driven CO2 reduction on a plasmonic nanoparticle catalyst. ACS Nano2018, 12, 8330–8340.

    Article  CAS  Google Scholar 

  87. Mahmoud, M. A. Reducing the photocatalysis induced by hot electrons of plasmonic nanoparticles due to tradeoff of photothermal heating. Phys. Chem. Chem. Phys.2017, 19, 32016–32023.

    Article  CAS  Google Scholar 

  88. Simoncelli, S.; Pensa, E. L.; Brick, T.; Gargiulo, J.; Lauri, A.; Cambiasso, J.; Li, Y.; Maier, S. A.; Cortés, E. Monitoring plasmonic hot-carrier chemical reactions at the single particle level. Faraday Discuss.2019, 214, 73–87.

    Article  CAS  Google Scholar 

  89. Yu, S.; Wilson, A. J.; Kumari, G.; Zhang, X.Q.; Jain, P. K. Opportunities and challenges of solar-energy-driven carbon dioxide to fuel conversion with plasmonic catalysts. ACS Energy Lett.2017, 2, 2058–2070.

    Article  CAS  Google Scholar 

  90. Adleman, J. R.; Boyd, D. A.; Goodwin, D. G.; Psaltis, D. Heterogenous catalysis mediated by plasmon heating. Nano Lett.2009, 9, 4417–4423.

    Article  CAS  Google Scholar 

  91. Li, H. G.; Rivallan, M.; Thibault-Starzyk, F.; Travert, A.; Meunier, F. C. Effective bulk and surface temperatures of the catalyst bed of FT-IR cells used for in situ and operando studies. Phys. Chem. Chem. Phys.2013, 15, 7321–7327.

    Article  CAS  Google Scholar 

  92. Brites, C. D.; Lima, P. P.; Silva, N. J.; Millán, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. Thermometry at the nanoscale. Nanoscale2012, 4, 4799–4829.

    Article  CAS  Google Scholar 

  93. Brites, C. D.; Lima, P. P.; Silva, N. J.; Millán, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale. Adv. Mater.2010, 22, 4499–4504.

    Article  CAS  Google Scholar 

  94. Menges, F.; Mensch, P.; Schmid, H.; Riel, H.; Stemmer, A.; Gotsmann, B. Temperature mapping of operating nanoscale devices by scanning probe thermometry. Nat. Commun.2016, 7, 10874.

  95. Zeng, Z. C.; Wang, H.; Johns, P.; Hartland, G. V.; Schultz, Z. D. Photothermal microscopy of coupled nanostructures and the impact of nanoscale heating in surface-enhanced Raman spectroscopy. J. Phys. Chem. C2017, 121, 11623–11631.

    Article  CAS  Google Scholar 

  96. Xie, X.; Cahill, D. G. Thermometry of plasmonic nanostructures by anti-Stokes electronic Raman scattering. Appl. Phys. Lett.2016, 109, 183104.

    Article  CAS  Google Scholar 

  97. Kim, Y.; Dumett Torres, D.; Jain, P. K. Activation energies of plasmonic catalysts. Nano Lett.2016, 16, 3399–3407.

    Article  CAS  Google Scholar 

  98. Hindasageri, V.; Vedula, R. P.; Prabhu, S. V. Thermocouple error correction for measuring the flame temperature with determination of emissivity and heat transfer coefficient. Rev. Sci. Instrum.2013, 84, 024902.

    Article  CAS  Google Scholar 

  99. Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater.2017, 29, 1603730.

    Article  CAS  Google Scholar 

  100. Sanz, J. M.; Ortiz, D.; Alcaraz de la Osa, R.; Saiz, J. M.; González, F.; Brown, A. S.; Losurdo, M.; Everitt, H. O.; Moreno, F. UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects. J. Phys. Chem. C2013, 117, 19606–19615.

    Article  CAS  Google Scholar 

  101. Avanesian, T.; Gusmão, G. S.; Christopher, P. Mechanism of CO2 reduction by H2 on Ru(0001) and general selectivity descriptors for late-transition metal catalysts. J. Catal.2016, 343, 86–96.

    Article  CAS  Google Scholar 

  102. Solymosi, F.; Erdöhelyi, A.; Bánsági, T. Methanation of CO2 on supported rhodium catalyst. J. Catal.1981, 68, 371–382.

  103. Sexton, B. A.; Somorjai, G. A. The hydrogenation of CO and CO2 over polycrystalline rhodium: Correlation of surface composition, kinetics and product distributions. J. Catal.1977, 46, 167–189.

    Article  CAS  Google Scholar 

  104. Matsubu, J. C.; Yang, V. N.; Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc.2015, 137, 3076–3084.

    Article  CAS  Google Scholar 

  105. Karelovic, A.; Ruiz, P. Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts. J. Catal.2013, 301, 141–153.

  106. Jacquemin, M.; Beuls, A.; Ruiz, P. Catalytic production of methane from CO2 and H2 at low temperature: Insight on the reaction mechanism. Catal. Today2010, 157, 462–466.

    Article  CAS  Google Scholar 

  107. Williams, K. J.; Boffa, A. B.; Salmeron, M.; Bell, A. T.; Somorjai, G. A. The kinetics of CO2 hydrogenation on a Rh foil promoted by titania overlayers. Catal. Lett.1991, 9, 415–426.

  108. Henderson, M. A.; Worley, S. D. An infrared study of the hydrogenation of carbon dioxide on supported rhodium catalysts. J. Phys. Chem.1985, 89, 1417–1423.

    Article  CAS  Google Scholar 

  109. Goodman, D. W.; Peebles, D. E.; White, J. M. CO2 dissociation on rhodium: Measurement of the specific rates on Rh(111). Surf. Sci.1984, 140, L239–L243.

    Article  CAS  Google Scholar 

  110. Kale, M. J.; Avanesian, T.; Xin, H. L.; Yan, J.; Christopher, P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds. Nano Lett.2014, 14, 5405–5412.

    Article  CAS  Google Scholar 

  111. Marimuthu, A.; Zhang, J. W.; Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science2013, 339, 1590–1593.

    Article  CAS  Google Scholar 

  112. Zhang, X.; Li, P.; Barreda, Á.; Gutiérrez, Y.; González, F.; Moreno, F.; Everitt, H. O.; Liu, J. Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics. Nanoscale Horiz.2016, 1, 75–80.

    Article  CAS  Google Scholar 

  113. Zhang, H.; Govorov, A. O. Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement. J. Phys. Chem. C2014, 118, 7606–7614.

    Article  CAS  Google Scholar 

  114. Gutiérrez, Y.; Ortiz, D.; Saiz, J. M.; González, F.; Everitt, H. O.; Moreno, F. The UV plasmonic behavior of distorted rhodium nanocubes. Nanomaterials (Basel) 2017, 7, 425.

    Article  CAS  Google Scholar 

  115. Wang, S. S.; Ding, T. Photothermal-assisted optical stretching of gold nanoparticles. ACS Nano2019, 13, 32–37.

    Article  CAS  Google Scholar 

  116. Olsen, T.; Schiøtz, J. Origin of power laws for reactions at metal surfaces mediated by hot electrons. Phys. Rev. Lett.2009, 103, 238301.

Download references

Acknowledgements

The authors thank Dr. Xiao Zhang, Dr. Matthew E. Reish, and Professor Weitao Yang for their valuable contributions to this work. Work at Duke was supported in part by the National Science Foundation (CHE-1565657) and the Army Research Office (Award W911NF-15-1-0320). X. L. was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henry O. Everitt or Jie Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Everitt, H.O. & Liu, J. Synergy between thermal and nonthermal effects in plasmonic photocatalysis. Nano Res. 13, 1268–1280 (2020). https://doi.org/10.1007/s12274-020-2694-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2694-z

Keywords

Navigation