Skip to main content
Log in

Low Li ion diffusion barrier on low-crystalline FeOOH nanosheets and high performance of energy storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To obtain symmetric supercapacitors (SCs) with high energy density, it is critical to fabricate an electrode with wide potential window and excellent capacitive performance. Herein, by using the strong double hydrolysis reaction between anions and cations, the FeOOH nanosheets on the surface of activated carbon cloth (FeOOH@AC) are prepared through a simple hydrothermal process. The FeOOH@AC electrode exhibits maximum capacitance of 4,090 mF·cm−2 at wider potential window -1–0 V and 3,250 mF·cm−2 at 0–1 V versus SCE in 2 M LiNO3 electrolyte. With two pieces of FeOOH@AC electrodes the obtained symmetric SC can operate at the voltage window of 2 V. This FeOOH symmetric SC shows high energy density of 13.261 mWh·cm−3 at a power density of 14.824 mW·cm−3 and maintains 4.175 mWh·cm−3 at a maximum power density of 118.564 mW·cm−3, as well as excellent charge storage capacity and cyclic stability. Li ion adsorption and diffusion mechanism on the (200) facets of FeOOH are explained by the density functional theory (DFT) calculations. The simple synthesis process and excellent capacitance performance of the FeOOH@AC composite make it a very promising candidate for high performance symmetric SC electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, C. C.; Yan, X. J.; Hu, F.; Gao, G. H.; Wu, G. M.; Yang, X. W. Toward superior capacitive energy storage: Recent advances in pore engineering for dense electrodes. Adv. Mater.2018, 30, 1705713.

    Google Scholar 

  2. Geng, P. B.; Zheng, S. S.; Tang, H.; Zhu, R. M.; Zhang, L.; Cao, S.; Xue, H. G.; Pang, H. Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater.2018, 8, 1703259.

    Google Scholar 

  3. Zhao, J.; Jiang, Y. F.; Fan, H.; Liu, M.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Ma, Y. W.; Hu, Z. Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv. Mater.2017, 29, 1604569.

    Google Scholar 

  4. Liu, G. L.; Guo, H. Y.; Xu, S. X.; Hu, C. G.; Wang, Z. L. Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv. Energy Mater.2019, 9, 1900801.

    Google Scholar 

  5. Raza, W.; Ali, F.; Raza, N.; Luo, Y. W.; Kim, K. H.; Yang, J. H.; Kumar, S.; Mehmood, A.; Kwon, E. E. Recent advancements in supercapacitor technology. Nano Energy.2018, 52, 441–473.

    CAS  Google Scholar 

  6. Xu, W. N.; Jiang, Z. Q.; Yang, Q.; Huo, W. C.; Javed, M. S.; Li, Y. R.; Huang, L.; Gu, X.; Hu, C. G. Approaching the lithium-manganese oxides’ energy storage limit with Li2MnO3 nanorods for highperformance supercapacitor. Nano Energy.2018, 43, 168–176.

    CAS  Google Scholar 

  7. Zuo, W. H.; Xie, C. Y.; Xu, P.; Li, Y. Y.; Liu, J. P. A novel phase-transformation activation process toward Ni-Mn-O nanoprism arrays for 2.4 V ultrahigh-voltage aqueous supercapacitors. Adv. Mater.2017, 29, 1703463.

    Google Scholar 

  8. Xia, H.; Hong, C. Y.; Li, B.; Zhao, B.; Lin, Z. X.; Zheng, M. B.; Savilov, S. V.; Aldoshin, S. M. Facile synthesis of hematite quantumdot/ functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors. Adv. Funct. Mater.2015, 25, 627–635.

    CAS  Google Scholar 

  9. Suo, L. M.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X. L.; Luo, C.; Wang, C. S.; Xu, K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science.2015, 350, 938–943.

    CAS  Google Scholar 

  10. Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev.2018, 118, 9233–9280.

    CAS  Google Scholar 

  11. Wang, Y. G.; Song, Y. F.; Xia, Y. Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev.2016, 45, 5925–5950.

    CAS  Google Scholar 

  12. Jabeen, N.; Hussain, A.; Xia, Q. Y.; Sun, S.; Zhu, J. W.; Xia, H. High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater.2017, 29, 1700804.

    Google Scholar 

  13. Li, J. E.; Wang, Y. W.; Xu, W. N.; Wang, Y.; Zhang, B.; Luo, S.; Zhou, X. Y.; Zhang, C. L.; Gu, X.; Hu, C. G. Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy.2019, 57, 379–387.

    CAS  Google Scholar 

  14. Meng, X. H.; Deng, D. Trash to treasure: Waste eggshells as chemical reactors for the synthesis of amorphous Co(OH)2 nanorod arrays on various substrates for applications in rechargeable alkaline batteries and electrocatalysis. ACS Appl. Mater. Interfaces.2017, 9, 5244–5253.

    CAS  Google Scholar 

  15. Chen, H. C.; Qin, Y. L.; Cao, H. J.; Song, X. X.; Huang, C. H.; Feng, H. B.; Zhao, X. S. Synthesis of amorphous nickel-cobalt-manganese hydroxides for supercapacitor-battery hybrid energy storage system. Energy Storage Mater..2019, 17, 194–203.

    Google Scholar 

  16. Zhao, B. T.; Zhang, L.; Zhang, Q. B.; Chen, D. C.; Cheng, Y.; Deng, X.; Chen, Y.; Murphy, R.; Xiong, X. H.; Song, B. et al. Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage. Adv. Energy Mater.2018, 8, 1702247.

    Google Scholar 

  17. Chen, J. Z.; Xu, J. L.; Zhou, S.; Zhao, N.; Wong, C. P. Amorphous nanostructured FeOOH and Co-Ni double hydroxides for highperformance aqueous asymmetric supercapacitors. Nano Energy.2016, 21, 145–153.

    CAS  Google Scholar 

  18. Gong, X. F.; Li, S. H.; Lee, P. S. A fiber asymmetric supercapacitor based on FeOOH/PPy on carbon fibers as an anode electrode with high volumetric energy density for wearable applications. Nanoscale.2017, 9, 10794–10801.

    CAS  Google Scholar 

  19. Owusu, K. A.; Qu, L. B.; Li, J. T.; Wang, Z. Y.; Zhao, K. N.; Yang, C.; Hercule, K. M.; Lin, C.; Shi, C. W.; Wei, Q. L. et al. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun.2017, 8, 14264.

    Google Scholar 

  20. Chen, L. F.; Yu, Z. Y.; Wang, J. J.; Li, Q. X.; Tan, Z. Q.; Zhu, Y. W.; Yu, S. H. Metal-like fluorine-doped ß-FeOOH nanorods grown on carbon cloth for scalable high-performance supercapacitors. Nano Energy.2015, 11, 119–128.

    CAS  Google Scholar 

  21. Liao, Q. Y.; Wang, C. X. Amorphous FeOOH nanorods and Co3O4 nanoflakes as binder-free electrodes for high-performance all-solidstate asymmetric supercapacitors. CrystEngComm.2019, 21, 662–672.

    CAS  Google Scholar 

  22. Yang, J.; Liu, W.; Niu, H.; Cheng, K.; Ye, K.; Zhu, K.; Wang, G. L.; Cao, D. X.; Yan, J. Ultrahigh energy density battery-type asymmetric supercapacitors: NiMoO4 nanorod-decorated graphene and graphene/ Fe2O3 quantum dots. Nano Res.2018, 11, 4744–4758.

    CAS  Google Scholar 

  23. Liu, J. Q.; Zheng, M. B.; Shi, X. Q.; Zeng, H. B.; Xia, H. Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Adv. Funct. Mater.2016, 26, 919–930.

    CAS  Google Scholar 

  24. Li, H. B.; Yu, M. H.; Wang, F. X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C. X.; Tong, Y. X.; Yang, G. W. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun.2013, 4, 1894.

    CAS  Google Scholar 

  25. Huang, C. H.; Song, X. X.; Qin, Y. L.; Xu, B. H.; Chen, H. C. Cation exchange reaction derived amorphous bimetal hydroxides as advanced battery materials for hybrid supercapacitors. J. Mater. Chem. A.2018, 6, 21047–21055.

    CAS  Google Scholar 

  26. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B.1999, 59, 1758–1775.

    CAS  Google Scholar 

  27. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865–3868.

    CAS  Google Scholar 

  28. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B.1994, 50, 17953–17979.

    Google Scholar 

  29. Chabi, S.; Peng, C.; Hu, D.; Zhu, Y. Q. Ideal three-dimensional electrode structures for electrochemical energy storage. Adv. Mater.2014, 26, 2440–2445.

    CAS  Google Scholar 

  30. Xin, F. E.; Jia, Y. F.; Sun, J.; Dang, L. Q.; Liu, Z. H.; Lei, Z. B. Enhancing the capacitive performance of carbonized wood by growing FeOOH nanosheets and poly(3,4-ethylenedioxythiophene) coating. ACS Appl. Mater. Interfaces.2018, 10, 32192–32200.

    CAS  Google Scholar 

  31. Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal.2004, 36, 1564–1574.

    CAS  Google Scholar 

  32. Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A. Jr. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon.2009, 47, 145–152.

    CAS  Google Scholar 

  33. Shen, B. S.; Guo, R. S.; Lang, J. W.; Liu, L.; Liu, L. Y.; Yan, X. B. A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte. J. Mater. Chem. A.2016, 4, 8316–8327.

    CAS  Google Scholar 

  34. Wang, G. M.; Wang, H. Y.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Zhai, T.; Tong, Y. X.; Li, Y. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater.2014, 26, 2676–2682.

    CAS  Google Scholar 

  35. Nieuwoudt, M. K.; Comins, J. D.; Cukrowski, I. The growth of the passive film on iron in 0.05 M NaOH studied in situ by Raman micro-spectroscopy and electrochemical polarisation. Part I: Nearresonance enhancement of the Raman spectra of iron oxide and oxyhydroxide compounds. J. Raman Spectrosc.2011, 42, 1335–1339.

    CAS  Google Scholar 

  36. Colomban, P.; Cherifi, S.; Despert, G. Raman identification of corrosion products on automotive galvanized steel sheets. J. Raman Spectrosc.2008, 39, 881–886.

    CAS  Google Scholar 

  37. de Faria, D. L. A.; Silva, S. V.; de Oliveira, M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc.1997, 28, 873–878.

    Google Scholar 

  38. Nguyen, T.; Fátima Montemor, M. γFeOOH and amorphous Ni-Mn hydroxide on carbon nanofoam paelectrodes for hybrid supercapacitors. J. Mater. Chem. A.2018, 6, 2612–2624.

    CAS  Google Scholar 

  39. Imtiaz, M.; Chen, Z. X.; Zhu, C. L.; Pan, H.; Zada, I.; Li, Y.; Bokhari, S. W.; Luan, R. Y.; Nigar, S.; Zhu, S. M. In situ growth of ß-FeOOH on hierarchically porous carbon as anodes for highperformance lithium-ion batteries. Electrochim. Acta.2018, 283, 401–409.

    CAS  Google Scholar 

  40. Xiong, G. P.; He, P. G.; Lyu, Z. P.; Chen, T. F.; Huang, B. Y.; Chen, L.; Fisher, T. S. Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors. Nat. Commun.2018, 9, 790.

    Google Scholar 

  41. Rahimi, S.; Moattari, R. M.; Rajabi, L.; Derakhshan, A. A.; Keyhani, M. Iron oxide/hydroxide (α, γFeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media. J. Ind. Eng. Chem.2015, 23, 33–43.

    CAS  Google Scholar 

  42. Weckler, B.; Lutz, H. D. Lattice vibration spectra. Part XCV. Infrared spectroscopic studies on the iron oxide hydroxides goethite (α), akaganéite (ß), lepidocrocite (γ), and feroxyhite (δ). Eur. J. Solid State Inorg. Chem.1998, 35, 531–544.

    CAS  Google Scholar 

  43. Li, N.; Zhi, C. Y.; Zhang, H. Y. High-performance transparent and flexible asymmetric supercapacitor based on graphene-wrapped amorphous FeOOH nanowire and Co(OH)2 nanosheet transparent films produced at air-water interface. Electrochim. Acta.2016, 220, 618–627.

    CAS  Google Scholar 

  44. Chen, R.; Puri, I. K.; Zhitomirsky, I. Polypyrrole-carbon nanotube- FeOOH composites for negative electrodes of asymmetric supercapacitors. J. Electrochem. Soc.2019, 166, A935–A940.

    CAS  Google Scholar 

  45. Zhang, D. B.; Kong, X. G.; Jiang, M. H.; Lei, D. Q.; Lei, X. D. NiOOH-decorated a-FeOOH nanosheet array on stainless steel for applications in oxygen evolution reactions and supercapacitors. ACS Sustainable Chem. Eng.2019, 7, 4420–4428.

    CAS  Google Scholar 

  46. Chen, R.; Puri, I. K.; Zhitomirsky, I. High areal capacitance of FeOOH-carbon nanotube negative electrodes for asymmetric supercapacitors. Ceram. Int.2018, 44, 18007–18015.

    CAS  Google Scholar 

  47. Liu, R.; Ma, L. N.; Niu, G. D.; Li, X. L.; Li, E. Y.; Bai, Y.; Liu, Y.; Yuan, G. H. Flexible Ti-doped FeOOH quantum dots/graphene/bacterial cellulose anode for high-energy asymmetric supercapacitors. Part. Part. Syst. Char.2017, 34, 1700213.

    Google Scholar 

  48. Liang, X.; Long, G. H.; Fu, C. W.; Pang, M. J.; Xi, Y. L.; Li, J. Z.; Han, W.; Wei, G. D.; Ji, Y. High performance all-solid-state flexible supercapacitor for wearable storage device application. Chem. Eng. J.2018, 345, 186–195.

    CAS  Google Scholar 

  49. Liang, H. F.; Xia, C.; Emwas, A. H.; Anjum, D. H.; Miao, X. H.; Alshareef, H. N. Phosphine plasma activation of a-Fe2O3 for high energy asymmetric supercapacitors. Nano Energy.2018, 49, 155–162.

    CAS  Google Scholar 

  50. Sun, S.; Zhai, T.; Liang, C. L.; Savilov, S. V.; Xia, H. Boosted crystalline/amorphous Fe2O3-d core/shell heterostructure for flexible solid-state pseudocapacitors in large scale. Nano Energy.2018, 45, 390–397.

    CAS  Google Scholar 

  51. Zhao, J.; Li, Z. J.; Yuan, X. C.; Yang, Z.; Zhang, M.; Meng, A.; Li, Q. D. A high-energy density asymmetric supercapacitor based on Fe2O3 nanoneedle arrays and NiCo2O4/Ni(OH) 2 hybrid nanosheet arrays grown on sic nanowire networks as free-standing advanced electrodes. Adv. Energy Mater.2018, 8, 1702787.

    Google Scholar 

  52. Zhang, G. W.; Yao, H.; Zhang, F.; Gao, Z. T.; Li, Q. J.; Yang, Y. Y.; Lu, X. H. A high over-potential binder-free electrode constructed of Prussian blue and MnO2 for high performance aqueous supercapacitors. Nano Res.2019, 12, 1061–1069.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 51572040), and Fundamental Research Funds for the Central Universities (Nos. 2019CDXZWL001, 2018CDQYWL0046, and 2018CDPTCG0001/22). We would like to thank Analytical and Testing Center of Chongqing University for TEM, BET, XPS, EDX and XRD measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Gu, Xue Wang or Chenguo Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Luo, S., Wang, C. et al. Low Li ion diffusion barrier on low-crystalline FeOOH nanosheets and high performance of energy storage. Nano Res. 13, 759–767 (2020). https://doi.org/10.1007/s12274-020-2691-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2691-2

Keywords

Navigation