Reticular exploration of uranium-based metal—organic frameworks with hexacarboxylate building units

Abstract

The rational reticular design of metal—organic frameworks (MOFs) from building units of known geometries is essential for enriching the diversity of MOF structures. Unexpected and intriguing structures, however, can also arise from subtle changes in the rigidity/length of organic linkers and/or synthetic conditions. Herein, we report three uranium-based MOF structures—i.e., NU-135X (X = 0, 1, 2)—synthesized from trigonal planar uranyl nodes and triptycene-based hexacarboxylate ligands with variable arm lengths. A new chiral 3,6-connected nuc net was observed in NU-1350, while the extended versions of the ligand led to 3-fold catenated MOFs (NU-1351 and NU-1352) with rare 3,6-connected cml-c3 nets. The differences in the topology of NU-1350 and NU-1351/NU-1352 could be attributed to the slight distortions of the shorter linker in the former from the ideal trigonal prism geometry to an octahedral geometry when coordinated to the trigonal planar uranyl nodes.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature2003, 423, 705–714.

    CAS  Google Scholar 

  2. [2]

    Yaghi, O. M.; Kalmutzki, M. J.; Diercks, C. S. Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks; Wiley-VCH Verlag GmbH & Co.: Weinheim, 2019.

    Google Scholar 

  3. [3]

    Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O. M. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev.2014, 114, 1343–1370.

    CAS  Google Scholar 

  4. [4]

    Chen, Z. J.; Jiang, H.; O’Keeffe, M.; Eddaoudi, M. Minimal edge-transitive nets for the design and construction of metal-organic frameworks. Faraday Discuss. 2017, 201, 127–143.

    CAS  Google Scholar 

  5. [5]

    Chen, Z. J.; Weseliński, Ł. J.; Adil, K.; Belmabkhout, Y.; Shkurenko, A.; Jiang, H.; Bhatt, P. M.; Guillerm, V.; Dauzon, E.; Xue, D. X. et al. Applying the power of reticular chemistry to finding the missing alb-MOF platform based on the (6,12)-coordinated edge-transitive net. J. Am. Chem. Soc.2017, 139, 3265–3274.

    CAS  Google Scholar 

  6. [6]

    Chen, Z. J.; Hanna, S. L.; Redfern, L. R.; Alezi, D.; Islamoglu, T.; Farha, O. K. Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coord. Chem. Rev.2019, 386, 32–49.

    CAS  Google Scholar 

  7. [7]

    Jiang, H.; Jia, J. T.; Shkurenko, A.; Chen, Z. J.; Adil, K.; Belmabkhout, Y.; Weselinski, L. J.; Assen, A. H.; Xue, D. X.; O’Keeffe, M. et al. Enriching the reticular chemistry repertoire: Merged nets approach for the rational design of intricate mixed-linker metal-organic framework platforms. J. Am. Chem. Soc.2018, 140, 8858–8867.

    CAS  Google Scholar 

  8. [8]

    Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O. M. Three-periodic nets and tilings: Edge-transitive binodal structures. Acta Cryst. A2006, 62, 350–355.

    Google Scholar 

  9. [9]

    O’Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res.2008, 41, 1782–1789.

    Google Scholar 

  10. [10]

    Zhang, X.; Huang, Z. Y.; Ferrandon, M.; Yang, D. L.; Robison, L.; Li, P.; Wang, T. C.; Delferro, M.; Farha, O. K. Catalytic chemoselective functionalization of methane in a metal-organic framework. Nat. Catal.2018, 1, 356–362.

    CAS  Google Scholar 

  11. [11]

    Kim, H.; Yang, S.; Rao, S. R.; Narayanan, S.; Kapustin, E. A.; Furukawa, H.; Umans, A. S.; Yaghi, O. M.; Wang, E. N. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science2017, 356, 430–434.

    CAS  Google Scholar 

  12. [12]

    Li, H.; Wang, K. C.; Sun, Y. J.; Lollar, C. T.; Li, J. L.; Zhou, H. C. Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today2018, 21, 108–121.

    CAS  Google Scholar 

  13. [13]

    Cui, X. L.; Chen, K. J.; Xing, H. B.; Yang, Q. W.; Krishna, R.; Bao, Z. B.; Wu, H.; Zhou, W.; Dong, X. L.; Han, Y. et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science2016, 353, 141–144.

    CAS  Google Scholar 

  14. [14]

    Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M. Gas/vapour separation using ultra-microporous metal-organic frameworks: Insights into the structure/separation relationship. Chem. Soc. Rev.2017, 46, 3402–3430.

    CAS  Google Scholar 

  15. [15]

    Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O’Keeffe, M.; Yaghi, O. M.; Design, M.; Group, D. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature2004, 427, 523–527.

    CAS  Google Scholar 

  16. [16]

    Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J. et al. Ultrahigh porosity in metal-organic frameworks. Science2010, 329, 424–428.

    CAS  Google Scholar 

  17. [17]

    Wang, Y. L.; Liu, Z. Y.; Li, Y. X.; Bai, Z. L.; Liu, W.; Wang, Y. X.; Xu, X. M.; Xiao, C. Q.; Sheng, D. P.; Diwu, J. et al. Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. J. Am. Chem. Soc.2015, 137, 6144–6147.

    CAS  Google Scholar 

  18. [18]

    Gilson, S. E.; Li, P.; Szymanowski, J. E. S.; White, J.; Ray, D.; Gagliardi, L.; Farha, O. K.; Burns, P. C. In situ formation of unprecedented neptunium-oxide wheel clusters stabilized in a metal-organic framework. J. Am. Chem. Soc.2019, 141, 11842–11846.

    CAS  Google Scholar 

  19. [19]

    Li, P.; Goswami, S.; Otake, K. I.; Wang, X. J.; Chen, Z. J.; Hanna, S. L.; Farha, O. K. Stabilization of an unprecedented hexanuclear secondary building unit in a thorium-based metal-organic framework. Inorg. Chem.2019, 58, 3586–3590.

    CAS  Google Scholar 

  20. [20]

    Dolgopolova, E. A.; Rice, A. M.; Shustova, N. B. Actinide-based MOFs: A middle ground in solution and solid-state structural motifs. Chem. Commun.2018, 54, 6472–6483.

    CAS  Google Scholar 

  21. [21]

    Hu, K. Q.; Huang, Z. W.; Zhang, Z. H.; Mei, L.; Qian, B. B.; Yu, J. P.; Chai, Z. F.; Shi, W. Q. Actinide-based porphyrinic MOF as a dehydrogenation catalyst. Chem.—Eur. J.2018, 24, 16766–16769.

    CAS  Google Scholar 

  22. [22]

    Hanna, S. L.; Zhang, X.; Otake, K. I.; Drout, R. J.; Li, P.; Islamoglu, T.; Farha, O. K. Guest-dependent single-crystal-to-single-crystal phase transitions in a two-dimensional uranyl-based metal-organic framework. Cryst. Growth Des.2019, 19, 506–512.

    CAS  Google Scholar 

  23. [23]

    Wang, Y. L.; Liu, W.; Bai, Z. L.; Zheng, T.; Silver, M. A.; Li, Y. X.; Wang, Y. X.; Wang, X.; Diwu, J.; Chai, Z. F. et al. Employing an unsaturated Th4+ site in a porous thorium-organic framework for Kr/Xe uptake and separation. Angew. Chem., Int. Ed.2018, 57, 5783–5787.

    CAS  Google Scholar 

  24. [24]

    Li, Y. X.; Yang, Z. X.; Wang, Y. L.; Bai, Z. L.; Zheng, T.; Dai, X.; Liu, S. T.; Gui, D. X.; Liu, W.; Chen, M. et al. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nat. Commun.2017, 8, 1354.

    Google Scholar 

  25. [25]

    Wang, Y. X.; Yin, X. M.; Liu, W.; Xie, J.; Chen, J. F.; Silver, M. A.; Sheng, D. P.; Chen, L. H.; Diwu, J.; Liu, N. et al. Emergence of uranium as a distinct metal center for building intrinsic X-ray scintillators. Angew. Chem., Int. Ed.2018, 57, 7883–7887.

    CAS  Google Scholar 

  26. [26]

    Xie, J.; Wang, Y. X.; Liu, W.; Yin, X. M.; Chen, L. H.; Zou, Y. M.; Diwu, J.; Chai, Z. F.; Albrecht-Schmitt, T. E.; Liu, G. K. et al. Highly sensitive detection of ionizing radiations by a photoluminescent uranyl organic framework. Angew. Chem., Int. Ed.2017, 56, 7500–7504.

    CAS  Google Scholar 

  27. [27]

    Li, P.; Vermeulen, N. A.; Malliakas, C. D.; Gómez-Gualdrón, D. A.; Howarth, A. J.; Mehdi, B. L.; Dohnalkova, A.; Browning, N. D.; O’Keeffe, M.; Farha, O. K. Bottom-up construction of a superstructure in a porous uranium-organic crystal. Science2017, 356, 624–627.

    CAS  Google Scholar 

  28. [28]

    Chen, Z. J.; Li, P. H.; Zhang, X.; Li, P.; Wasson, M. C.; Islamoglu, T.; Stoddart, J. F.; Farha, O. K. Reticular access to highly porous acs-MOFs with rigid trigonal prismatic linkers for water sorption. J. Am. Chem. Soc.2019, 141, 2900–2905.

    CAS  Google Scholar 

  29. [29]

    Chen, Z. J.; Li, P. H.; Wang, X. J.; Otake, K. I.; Zhang, X.; Robison, L.; Atilgan, A.; Islamoglu, T.; Hall, M. G.; Peterson, G. W. et al. Ligand-directed reticular synthesis of catalytically active missing zirconium-based metal-organic frameworks. J. Am. Chem. Soc.2019, 141, 12229–12235.

    CAS  Google Scholar 

  30. [30]

    Xue, D. X.; Cairns, A. J.; Belmabkhout, Y.; Wojtas, L.; Liu, Y. L.; Alkordi, M. H.; Eddaoudi, M. Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake. J. Am. Chem. Soc.2013, 135, 7660–7667.

    CAS  Google Scholar 

  31. [31]

    Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des.2014, 14, 3576–3586.

    CAS  Google Scholar 

  32. [32]

    Li, P. H.; Li, P.; Ryder, M. R.; Liu, Z. C.; Stern, C. L.; Farha, O. K.; Stoddart, J. F. Interpenetration isomerism in triptycene-based hydrogen-bonded organic frameworks. Angew. Chem., Int. Ed.2019, 58, 1664–1669.

    CAS  Google Scholar 

  33. [33]

    Chae, H. K.; Eddaoudi, M.; Kim, J.; Hauck, S. I.; Hartwig, J. F.; O’Keeffe, M.; Yaghi, O. M. Tertiary building units: Synthesis, structure, and porosity of a metal-organic dendrimer framework (MODF-1). J. Am. Chem. Soc.2001, 123, 11482–11483.

    CAS  Google Scholar 

  34. [34]

    Jia, J. T.; Sun, F. X.; Fang, Q. R.; Liang, X. Q.; Cai, K.; Bian, Z.; Zhao, H. J.; Gao, L. X.; Zhu, G. S. A novel low density metal-organic framework with pcu topology by dendritic ligand. Chem. Commun.2011, 47, 9167–9169.

    CAS  Google Scholar 

  35. [35]

    Delgado Friedrichs, O.; O’Keeffe, M.; Yaghi, O. M. Three-periodic nets and tilings: regular and quasiregular nets. Acta Cryst. A2003, 59, 22–27.

    Google Scholar 

  36. [36]

    Liu, C. M.; Zuo, J. L.; Zhang, D. Q.; Zhu, D. B. Carboxylic acid-dependent assembly of neodymium-organic frameworks with attractive topologies and second-order nonlinear optical and/or magnetic properties. CrystEngComm2008, 10, 1674–1680.

    CAS  Google Scholar 

  37. [37]

    Li, P. H.; Chen, Z. J.; Ryder, M. R.; Stern, C. L.; Guo, Q. H.; Wang, X. J.; Farha, O. K.; Stoddart, J. F. Assembly of a porous supramolecular polyknot from rigid trigonal prismatic building blocks. J. Am. Chem. Soc.2019, 141, 12998–13002.

    CAS  Google Scholar 

  38. [38]

    Yuan, S.; Lu, W. G.; Chen, Y. P.; Zhang, Q.; Liu, T. F.; Feng, D. W.; Wang, X.; Qin, J. S.; Zhou, H. C. Sequential linker installation: Precise placement of functional groups in multivariate metal-organic frameworks. J. Am. Chem. Soc.2015, 137, 3177–3180.

    CAS  Google Scholar 

  39. [39]

    Zhang, Y. Y.; Zhang, X.; Lyu, J. F.; Otake, K. I.; Wang, X. J.; Redfern, L. R.; Malliakas, C. D.; Li, Z. Y.; Islamoglu, T.; Wang, B. et al. A flexible metal-organic framework with 4-connected Zr6 nodes. J. Am. Chem. Soc.2018, 140, 11179–11183.

    CAS  Google Scholar 

  40. [40]

    Guillerm, V.; Grancha, T.; Imaz, I.; Juanhuix, J.; Maspoch, D. Zigzag ligands for transversal design in reticular chemistry: Unveiling new structural opportunities for metal-organic frameworks. J. Am. Chem. Soc.2018, 140, 10153–10157.

    CAS  Google Scholar 

  41. [41]

    Chandrasekhar, P.; Savitha, G.; Moorthy, J. N. Robust MOFs of “tsg” topology based on trigonal prismatic organic and metal cluster SBUs: Single crystal to single crystal postsynthetic metal exchange and selective CO2 capture. Chem.—Eur. J.2017, 23, 7297–7305.

    CAS  Google Scholar 

Download references

Acknowledgements

O. K. F. acknowledges the support from the U.S. Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0003763. This work made use of the EPIC facility of Northwestern University’s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205); the MRSEC program (NSF DMR-1720139) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. This work made use of the IMSERC at Northwestern University, which has received support from the NSF (CHE-1048773 and DMR0521267); Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205); the State of Illinois and International Institute for Nanotechnology (IIN). P. L. and J. F. S. acknowledge the Joint Center of Excellence in Integrated Nano-Systems (JCIN) at King Abdulaziz City for Science and Technology (KACST) and Northwestern University (NU).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhijie Chen or Omar K. Farha.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Li, P., Zhang, X. et al. Reticular exploration of uranium-based metal—organic frameworks with hexacarboxylate building units. Nano Res. 14, 376–380 (2021). https://doi.org/10.1007/s12274-020-2690-3

Download citation

Keywords

  • reticular chemistry
  • uranium-based metal—organic frameworks (MOFs)
  • hexacarboxylate
  • 3,6-connected net
  • catenation
  • actinide