Skip to main content
Log in

Self-aligned on-chip coupled photonic devices using individual cadmium sulfide nanobelts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanowires (NWs) and nanobelts (NBs) have been widely studied and fabricated into a variety of nanoscale devices such as light emitting diodes (LEDs), lasers and biosensors. These unique materials have attracted sustained attention due to their novel properties, ease of growth, and the ability to fabricate highly engineered devices. However, their widespread application remains hindered due to the difficulty in integrating multiple NWs or NBs together for more complex devices. Integration of multiple NWs and NBs together on the same chip can enable the coupling of different devices to help realize complex on-chip architectures such as photonic integrated circuits or nanoscale diagnostic tools, which currently require outcoupling using larger components. In this letter we report the coupling of on-chip NB LEDs and photodetectors using a single, precisely self-aligned, cadmium sulfide (CdS) NB fabricated on a silicon-on-insulator (SOI) substrate. Electroluminescence generated by the CdS NB is waveguided and measured across the self-aligned device and demonstrates an on/off ratio of 102–103. This work describes a new method for fabricating and integrating more complex nanoscale devices that can enable advances in areas such as on-chip optical computational components and nanoscale optical biodiagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao, Z. W.; Jin, W. F.; Li, Y. P.; Song, Q. J.; Wang, Y. L.; Zhang, K.; Wang, S.; Dai, L. Flexible solar cells based on CdSe nanobelt/graphene Schottky junctions. J. Mater. Chem. C2015, 3, 4511–4514.

    Article  CAS  Google Scholar 

  2. Kelzenberg, M. D.; Turner-Evans, D. B.; Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Lewis, N. S.; Atwater, H. A. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett.2008, 8, 710–714.

    Article  CAS  Google Scholar 

  3. Ye, Y.; Dai, Y.; Dai, L.; Shi, Z. J.; Liu, N.; Wang, F.; Fu, L.; Peng, R. M.; Wen, X. N.; Chen, Z. J. et al. High-performance single CdS nanowire (nanobelt) schottky junction solar cells with Au/ Graphene schottky electrodes. ACS Appl. Mater. Interfaces2010, 2, 3406–3410.

    Article  CAS  Google Scholar 

  4. Zhang, X. W.; Zhang, X. J.; Wang, L.; Wu, Y. M.; Wang, Y.; Gao, P.; Han, Y. Y.; Jie, J. S. ZnSe nanowire/Si p–n heterojunctions: Device construction and optoelectronic applications. Nanotechnology2013, 24, 395201.

    Article  CAS  Google Scholar 

  5. Agarwal, D.; Aspetti, C. O.; Cargnello, M.; Ren, M. L.; Yoo, J.; Murray, C. B.; Agarwal, R. Engineering localized surface plasmon interactions in gold by silicon nanowire for enhanced heating and photocatalysis. Nano Lett.2017, 17, 1839–1845.

    Article  CAS  Google Scholar 

  6. Wei, T. Y.; Huang, C. T.; Hansen, B. J.; Lin, Y. F.; Chen, L. J.; Lu, S. Y.; Wang, Z. L. Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors. Appl. Phys. Lett.2010, 96, 013508.

    Article  CAS  Google Scholar 

  7. Gao, T.; Li, Q. H.; Wang, T. H. CdS nanobelts as photoconductors. Appl. Phys. Lett.2005, 86, 173105.

    Article  CAS  Google Scholar 

  8. Jie, J. S.; Zhang, W. J.; Jiang, Y.; Meng, X. M.; Li, Y. Q.; Lee, S. T. Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett.2006, 6, 1887–1892.

    Article  CAS  Google Scholar 

  9. Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett.2007, 7, 1003–1009.

    Article  CAS  Google Scholar 

  10. Fan, P. Y.; Huang, K. C. Y.; Cao, L. Y.; Brongersma, M. L. Redesigning photodetector electrodes as an optical antenna. Nano Lett.2013, 13, 392–396.

    Article  CAS  Google Scholar 

  11. Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single-nanowire electrically driven lasers. Nature2003, 421, 241–245.

    Article  CAS  Google Scholar 

  12. Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R. M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X. Plasmon lasers at deep subwavelength scale. Nature2009, 461, 629–632.

    Article  CAS  Google Scholar 

  13. Bao, J. M.; Zimmler, M. A.; Capasso, F.; Wang, X. W.; Ren, Z. F. Broadband ZnO single-nanowire light-emitting diode. Nano Lett.2006, 6, 1719–1722.

    Article  CAS  Google Scholar 

  14. Tomioka, K.; Motohisa, J.; Hara, S.; Hiruma, K.; Fukui, T. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett.2010, 10, 1639–1644.

    Article  CAS  Google Scholar 

  15. Zimmler, M. A.; Stichtenoth, D.; Ronning, C.; Yi, W.; Narayanamurti, V.; Voss, T.; Capasso, F. Scalable fabrication of nanowire photonic and electronic circuits using spin-on glass. Nano Lett.2008, 8, 1695–1699.

    Article  Google Scholar 

  16. Park, I.; Li, Z. Y.; Pisano, A. P.; Williams, R. S. Top-down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology2009, 21, 015501.

    Article  CAS  Google Scholar 

  17. Patolsky, F.; Zheng, G. F.; Lieber, C. M. Nanowire-based biosensors. Anal. Chem.2006, 78, 4260–4269.

    Article  CAS  Google Scholar 

  18. Patolsky, F.; Timko, B. P.; Yu, G. H.; Fang, Y.; Greytak, A. B.; Zheng, G. F.; Lieber, C. M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science2006, 313, 1100–1104.

    Article  CAS  Google Scholar 

  19. Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol.2012, 7, 180–184.

    Article  CAS  Google Scholar 

  20. Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol.2005, 23, 1294–1301.

    Article  CAS  Google Scholar 

  21. Piccione, B.; Cho, C. H.; van Vugt, L. K.; Agarwal, R. All-optical active switching in individual semiconductor nanowires. Nat. Nanotechnol.2012, 7, 640–645.

    Article  CAS  Google Scholar 

  22. Tchernycheva, M.; Messanvi, A.; de Luna Bugallo, A.; Jacopin, G.; Lavenus, P.; Rigutti, L.; Zhang, H.; Halioua, Y.; Julien, F. H.; Eymery, J. et al. Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors. Nano Lett.2014, 14, 3515–3520.

    Article  CAS  Google Scholar 

  23. Brubaker, M. D.; Blanchard, P. T.; Schlager, J. B.; Sanders, A. W.; Roshko, A.; Duff, S. M.; Gray, J. M.; Bright, V. M.; Sanford, N. A.; Bertness, K. A. On-chip optical interconnects made with Gallium Nitride nanowires. Nano Lett.2013, 13, 374–377.

    Article  CAS  Google Scholar 

  24. Agarwal, D.; Ren, M. L.; Berger, J. S.; Yoo, J.; Pan, A. L.; Agarwal, R. Nanocavity-enhanced giant stimulated Raman scattering in Si nanowires in the visible light region. Nano Lett.2019, 19, 1204–1209.

    Article  CAS  Google Scholar 

  25. Yan, R. X.; Gargas, D.; Yang, P. D. Nanowire photonics. Nat. Photonics2009, 3, 569–576.

    Article  CAS  Google Scholar 

  26. Shoaib, M.; Wang, X. X.; Zhang, X. H.; Zhang, Q. L.; Pan, A. L. Controllable vapor growth of large-area aligned CdSxSe1-x nanowires for visible range integratable photodetectors. Nano-Micro Lett.2018, 10, 58.

    Article  CAS  Google Scholar 

  27. Shoaib, M.; Zhang, X. H.; Wang, X. X.; Zhou, H.; Xu, T.; Wang, X.; Hu, X. L.; Liu, H. W.; Fan, X. P.; Zheng, W. H. et al. Directional growth of ultralong CsPbBr3 perovskite nanowires for highperformance photodetectors. J. Am. Chem. Soc.2017, 139, 15592–15595.

    Article  CAS  Google Scholar 

  28. Smith, P. A.; Nordquist, C. D.; Jackson, T. N.; Mayer, T. S.; Martin, B. R.; Mbindyo. J.; Mallouk, T. E. Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett.2000, 77, 1399–1401.

    Article  CAS  Google Scholar 

  29. Koto, M.; Leu, P. W.; McIntyre, P. C. Vertical germanium nanowire arrays in microfluidic channels for charged molecule detection. J. Electrochem. Soc.2009, 156, K11–K16.

    Article  CAS  Google Scholar 

  30. Lee, S. H.; Lee, H. J.; Oh, D.; Lee, S. W.; Goto, H.; Buckmaster, R.; Yasukawa, T.; Matsue, T.; Hong, S. K.; Ko, M. W. C. et al. Control of the ZnO nanowires nucleation site using microfluidic channels. J. Phys. Chem. B2006, 110, 3856–3859.

    Article  CAS  Google Scholar 

  31. Huang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science2001, 291, 630–633.

    Article  CAS  Google Scholar 

  32. Ahn, J. H.; Kim, H. S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y. G.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science2006, 314, 1754–1757.

    Article  CAS  Google Scholar 

  33. Messer, B.; Song, J. H.; Yang, P. D. Microchannel networks for nanowire patterning. J. Am. Chem. Soc.2000, 122, 10232–10233.

    Article  CAS  Google Scholar 

  34. Jin, S.; Whang, D.; McAlpine, M. C.; Friedman, R. S.; Wu, Y.; Lieber, C. M. Scalable interconnection and integration of nanowire devices without registration. Nano Lett.2004, 4, 915–919.

    Article  CAS  Google Scholar 

  35. Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett.2003, 3, 1255–1259.

    Article  CAS  Google Scholar 

  36. Ko, J.; Carpenter, E.; Issadore, D. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst2016, 141, 450–460.

    Article  CAS  Google Scholar 

  37. Im, H.; Shao, H. L.; Park, Y. I.; Peterson, V. M.; Castro, C. M.; Weissleder, R.; Lee, H. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol.2014, 32, 490–495.

    Article  CAS  Google Scholar 

  38. Patolsky, F.; Zheng, G. F.; Hayden, O.; Lakadamyali, M.; Zhuang, X. W.; Lieber, C. M. Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA2004, 101, 14017–14022.

    Article  CAS  Google Scholar 

  39. Bieniewski, T. M.; Czyzak, S. J. Refractive indexes of single hexagonal ZnS and CdS crystals. J. Opt. Soc. Am.1963, 53, 496–497.

    Article  CAS  Google Scholar 

  40. Jellison, G. E., Jr. Optical functions of silicon determined by twochannel polarization modulation ellipsometry. Opt. Mater.1992, 1, 41–47.

    Article  CAS  Google Scholar 

  41. Piccione, B.; van Vugt, L. K.; Agarwal, R. Propagation loss spectroscopy on single nanowire active waveguides. Nano Lett.2010, 10, 2251–2256.

    Article  CAS  Google Scholar 

  42. van Vugt, L. K.; Zhang, B.; Piccione, B.; Spector, A. A.; Agarwal, R. Size-dependent waveguide dispersion in nanowire optical cavities: Slowed light and dispersionless guiding. Nano Lett.2009, 9, 1684–1688.

    Article  CAS  Google Scholar 

  43. Qian, F.; Gradečak, S.; Li, Y.; Wen, C. Y.; Lieber, C. M. Core/Multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett.2005, 5, 2287–2291.

    Article  CAS  Google Scholar 

  44. Zimmler, M. A.; Voss, T.; Ronning, C.; Capasso, F. Exciton-related electroluminescence from ZnO nanowire light-emitting diodes. Appl. Phys. Lett.2009, 94, 241120.

    Article  CAS  Google Scholar 

  45. Wu, P. C.; Ma. R. M.; Liu, C.; Sun, T.; Ye, Y.; Dai, L. Highperformance CdS nanobelt field-effect transistors with high-k HfO2 top-gate dielectrics. J. Mater. Chem.2009, 19, 2125–2130.

    Article  CAS  Google Scholar 

  46. Green, M. A.; Keevers, M. J. Optical properties of intrinsic silicon at 300 K. Prog. Photovoltaics Res. Appl.1995, 3, 189–192.

    Article  CAS  Google Scholar 

  47. Li, Q. H.; Gao, T.; Wang, T. H. Optoelectronic characteristics of single CdS nanobelts. Appl. Phys. Lett.2005, 86, 193109.

    Article  CAS  Google Scholar 

  48. Paul, G. S.; Agarwal, P. Persistent photocurrent and decay studies in CdS nanorods thin films. J. Appl. Phys.2009, 106, 103705.

    Article  CAS  Google Scholar 

  49. Yin, H.; Akey, A.; Jaramillo, R. Large and persistent photoconductivity due to hole-hole correlation in CdS. Phys. Rev. Mater.2018, 2, 084602.

    Article  CAS  Google Scholar 

  50. van Vugt, L. K.; Piccione, B.; Cho, C. H.; Nukala, P.; Agarwal, R. Onedimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires. Proc. Natl. Acad. Sci. USA2011, 108, 10050–10055.

    Article  Google Scholar 

  51. van Vugt, L. K.; Piccione, B.; Agarwal, R. Incorporating polaritonic effects in semiconductor nanowire waveguide dispersion. Appl. Phys. Lett.2010, 97, 061115.

    Article  CAS  Google Scholar 

  52. Piccione, B.; Aspetti, C. O.; Cho, C. H.; Agarwal, R. Tailoring light–matter coupling in semiconductor and hybrid-plasmonic nanowires. Rep. Prog. Phys.2014, 77, 086401.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Agarwal.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, J.S., Ee, HS., Ren, M. et al. Self-aligned on-chip coupled photonic devices using individual cadmium sulfide nanobelts. Nano Res. 13, 1413–1418 (2020). https://doi.org/10.1007/s12274-020-2663-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2663-6

Keywords

Navigation