Skip to main content
Log in

Dynamics of exciton energy renormalization in monolayer transition metal disulfides

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fundamental understandings on the dynamics of charge carriers and excitonic quasiparticles in semiconductors are of central importance for both many-body physics and promising optoelectronic and photonic applications. Here, we investigated the carrier dynamics and many-body interactions in two-dimensional (2D) transition metal dichalcogenides (TMDs), using monolayer WS2 as an example, by employing femtosecond broadband pump-probe spectroscopy. Three time regimes for the exciton energy renormalization are unambiguously revealed with a distinct red-blue-red shift upon above-bandgap optical excitations. We attribute the dominant physical process in the three typical regimes to free carrier screening effect, Coulombic exciton–exciton interactions and Auger photocarrier generation, respectively, which show distinct dependence on the optical excitation wavelength, pump fluences and/or lattice temperature. An intrinsic exciton radiative lifetime of about 1.2 picoseconds (ps) in monolayer WS2 is unraveled at low temperature, and surprisingly the efficient Auger nonradiative decay of both bright and dark excitons puts the system in a nonequilibrium state at the nanosecond timescale. In addition, the dynamics of trions at low temperature is observed to be significantly different from that of excitons, e.g., a long radiative lifetime of ~ 108.7 ps at low excitation densities and the evolution of trion energy as a function of delay times. Our findings elucidate the dynamics of excitonic quasiparticles and the intricate many-body physics in 2D semiconductors, underpinning the future development of photonics, valleytronics and optoelectronics based on 2D semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett.2010, 105, 136805.

    Article  CAS  Google Scholar 

  2. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett.2010, 10, 1271–1275.

    Article  CAS  Google Scholar 

  3. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol.2012, 7, 699–712.

    Article  CAS  Google Scholar 

  4. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem.2013, 5, 263–275.

    Article  Google Scholar 

  5. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D Materials and van der Waals heterostructures. Science2016, 353, aac9439.

    Article  CAS  Google Scholar 

  6. Mak, K. F.; Xiao, D.; Shan, J. Light–valley interactions in 2D semiconductors. Nat. Photonics2018, 12, 451–460.

    Article  CAS  Google Scholar 

  7. Qiu, D. Y.; da Jornada, F. H.; Louie, S. G. Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett.2013, 111, 216805.

    Article  CAS  Google Scholar 

  8. Wang, G.; Chernikov, A.; Glazov, M. M.; Heinz, T. F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys.2018, 90, 021001.

    Article  CAS  Google Scholar 

  9. Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano2012, 6, 74–80.

    Article  CAS  Google Scholar 

  10. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol.2013, 8, 497–501.

    Article  CAS  Google Scholar 

  11. Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater.2015, 14, 301–306.

    Article  CAS  Google Scholar 

  12. Wang, S. F.; Wang, J. Y.; Zhao, W. J.; Giustiniano, F.; Chu, L. Q.; Verzhbitskiy, I.; Zhou Yong, J.; Eda, G. Efficient carrier-to-exciton conversion in field emission tunnel diodes based on MIS-type van der Waals heterostack. Nano Lett.2017, 17, 5156–5162.

    Article  CAS  Google Scholar 

  13. Lee, J.; Mak, K. F.; Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol.2016, 11, 421–425.

    Article  CAS  Google Scholar 

  14. Schaibley, J. R.; Yu, H. Y.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. D. Valleytronics in 2D materials. Nat. Rev. Mater.2016, 1, 16055.

    Article  CAS  Google Scholar 

  15. Rivera, P.; Yu, H. Y.; Seyler, K. L.; Wilson, N. P.; Yao, W.; Xu, X. D. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol.2018, 13, 1004–1015.

    Article  CAS  Google Scholar 

  16. Unuchek, D.; Ciarrocchi, A.; Avsar, A.; Watanabe, K.; Taniguchi, T.; Kis, A. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature2018, 560, 340–344.

    Article  CAS  Google Scholar 

  17. Wu, S. F.; Buckley, S.; Schaibley, J. R.; Feng, L. F.; Yan, J. Q.; Mandrus, D. G.; Hatami, F.; Yao, W.; Vuckovic, J.; Majumdar, A. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature2015, 520, 69–72.

    Article  CAS  Google Scholar 

  18. Ye, Y.; Wong, Z. J.; Lu, X. F.; Ni, X. J.; Zhu, H. Y.; Chen, X. H.; Wang, Y.; Zhang, X. Monolayer excitonic laser. Nat. Photonics2015, 9, 733–737.

    Article  CAS  Google Scholar 

  19. Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y. L.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett.2014, 113, 076802.

    Article  CAS  Google Scholar 

  20. Chernikov, A.; Ruppert, C.; Hill, H. M.; Rigosi, A. F.; Heinz, T. F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photonics2015, 9, 466–470.

    Article  CAS  Google Scholar 

  21. Liu, B.; Zhao, W. J.; Ding, Z. J.; Verzhbitskiy, I.; Li, L. J.; Lu, J. P.; Chen, J. Y.; Eda, G.; Loh, K. P. Engineering bandgaps of monolayer MoS2 and WS2 on fluoropolymer substrates by electrostatically tuned many-body effects. Adv. Mater.2016, 28, 6457–6464.

    Article  CAS  Google Scholar 

  22. Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater.2013, 12, 207–211.

    Article  CAS  Google Scholar 

  23. Barbone, M.; Montblanch, A. R. P.; Kara, D. M.; Palacios-Berraquero, C.; Cadore, A. R.; De Fazio, D.; Pingault, B.; Mostaani, E.; Li, H.; Chen, B. et al. Charge-tuneable biexciton complexes in monolayer WSe2. Nat. Commun.2018, 9, 3721.

    Article  CAS  Google Scholar 

  24. You, Y. M.; Zhang, X. X.; Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R.; Heinz, T. F. Observation of biexcitons in monolayer WSe2. Nat. Phys.2015, 11, 477–481.

    Article  CAS  Google Scholar 

  25. Li, Z. P.; Wang, T. M.; Lu, Z. G.; Jin, C. H.; Chen, Y. W.; Meng, Y. Z.; Lian, Z.; Taniguchi, T.; Watanabe, K.; Zhang, S. B. et al. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2. Nat. Commun.2018, 9, 3719.

    Article  CAS  Google Scholar 

  26. Steinhoff, A.; Florian, M.; Singh, A.; Tran, K.; Kolarczik, M.; Helmrich, S.; Achtstein, A. W.; Woggon, U.; Owschimikow, N.; Jahnke, F. et al. Biexciton fine structure in monolayer transition metal dichalcogenides. Nat. Phys.2018, 14, 1199–1204.

    Article  CAS  Google Scholar 

  27. Poellmann, C.; Steinleitner, P.; Leierseder, U.; Nagler, P.; Plechinger, G.; Porer, M.; Bratschitsch, R.; Schüller, C.; Korn, T.; Huber, R. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater.2015, 14, 889–893.

    Article  CAS  Google Scholar 

  28. Shi, H. Y.; Yan, R. S.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. B. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano2013, 7, 1072–1080.

    Article  CAS  Google Scholar 

  29. Ceballos, F.; Cui, Q. N.; Bellus, M. Z.; Zhao, H. Exciton formation in monolayer transition metal dichalcogenides. Nanoscale2016, 8, 11681–11688.

    Article  CAS  Google Scholar 

  30. Steinleitner, P.; Merkl, P.; Nagler, P.; Mornhinweg, J.; Schüller, C.; Korn, T.; Chernikov, A.; Huber, R. Direct observation of ultrafast exciton formation in a monolayer of WSe2. Nano Lett.2017, 17, 1455–1460.

    Article  CAS  Google Scholar 

  31. Wang, H. N.; Zhang, C. J.; Rana, F. Ultrafast dynamics of defectassisted electron–hole recombination in monolayer MoS2. Nano Lett.2015, 15, 339–345.

    Article  CAS  Google Scholar 

  32. Hao, K.; Specht, J. F.; Nagler, P.; Xu, L. X.; Tran, K.; Singh, A.; Dass, C. K.; Schüller, C.; Korn, T.; Richter, M. et al. Neutral and charged inter-valley biexcitons in monolayer MoSe2. Nat. Commun.2017, 8, 15552.

    Article  CAS  Google Scholar 

  33. Plechinger, G.; Nagler, P.; Arora, A.; Schmidt, R.; Chernikov, A.; del Águila, A. G.; Christianen, P. C. M.; Bratschitsch, R.; Schuller, C.; Korn, T. Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide. Nat. Commun.2016, 7, 12715.

    Article  CAS  Google Scholar 

  34. Guo, L.; Wu, M.; Cao, T.; Monahan, D. M.; Lee, Y. H.; Louie, S. G.; Fleming, G. R. Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides. Nat. Phys.2019, 15, 228–232.

    Article  CAS  Google Scholar 

  35. Schmidt, R.; Berghäuser, G.; Schneider, R.; Selig, M.; Tonndorf, P.; Malić, E.; Knorr, A.; Michaelis de Vasconcellos, S.; Bratschitsch, R. Ultrafast Coulomb-induced intervalley coupling in atomically thin WS2. Nano Lett.2016, 16, 2945–2950.

    Article  CAS  Google Scholar 

  36. Hao, K.; Moody, G.; Wu, F. C.; Dass, C. K.; Xu, L. X.; Chen, C. H.; Sun, L. Y.; Li, M. Y.; Li, L. J.; MacDonald, A. H. et al. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys.2016, 12, 677–682.

    Article  CAS  Google Scholar 

  37. Bertoni, R.; Nicholson, C. W.; Waldecker, L.; Hübener, H.; Monney, C.; De Giovannini, U.; Puppin, M.; Hoesch, M.; Springate, E.; Chapman, R. T. et al. Generation and evolution of spin-, valley-, and layer-polarized excited carriers in inversion-symmetric WSe2. Phys. Rev. Lett.2016, 117, 277201.

    Article  CAS  Google Scholar 

  38. Yan, T. F.; Yang, S. Y.; Li, D.; Cui, X. D. Long valley relaxation time of free carriers in monolayer WSe2. Phys. Rev. B2017, 95, 241406.

    Article  Google Scholar 

  39. Mai, C.; Barrette, A.; Yu, Y. F.; Semenov, Y. G.; Kim, K. W.; Cao, L. Y.; Gundogdu, K. Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano Lett.2014, 14, 202–206.

    Article  CAS  Google Scholar 

  40. Cunningham, P. D.; Hanbicki, A. T.; McCreary, K. M.; Jonker, B. T. Photoinduced bandgap renormalization and exciton binding energy reduction in WS2. ACS Nano2017, 11, 12601–12608.

    Article  CAS  Google Scholar 

  41. Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol.2014, 9, 682–686.

    Article  CAS  Google Scholar 

  42. Ruppert, C.; Chernikov, A.; Hill, H. M.; Rigosi, A. F.; Heinz, T. F. The role of electronic and phononic excitation in the optical response of monolayer WS2 after ultrafast excitation. Nano Lett.2017, 17, 644–651.

    Article  CAS  Google Scholar 

  43. Sie, E. J.; Steinhoff, A.; Gies, C.; Luo, C. H.; Ma, Q.; Rosner, M.; Schönhoff, G.; Jahnke, F.; Wehling, T. O.; Lee, Y. H. et al. Observation of exciton redshift-blueshift crossover in monolayer WS2. Nano Lett.2017, 17, 4210–4216.

    Article  CAS  Google Scholar 

  44. Yuan, L.; Chung, T. F.; Kuc, A.; Wan, Y.; Xu, Y.; Chen, Y. P.; Heine, T.; Huang, L. B. Photocarrier generation from interlayer chargetransfer transitions in WS2-graphene heterostructures. Sci. Adv.2018, 4, e1700324.

    Article  CAS  Google Scholar 

  45. Wake, D. R.; Yoon, H. W.; Wolfe, J. P.; Morkoç, H. Response of excitonic absorption spectra to photoexcited carriers in GaAs quantum wells. Phys. Rev. B1992, 46, 13452–13460.

    Article  CAS  Google Scholar 

  46. Manzke, G.; Henneberger, K.; May, V. Many-exciton theory for multiple quantum-well structures. Phys. Status Solidi B1987, 139, 233–239.

    Article  CAS  Google Scholar 

  47. Aivazian, G.; Yu, H. Y.; Wu, S. F.; Yan, J. Q.; Mandrus, D. G.; Cobden, D.; Yao, W.; Xu, X. D. Many-body effects in nonlinear optical responses of 2D layered semiconductors. 2D Mater.2017, 4, 025024.

    Article  CAS  Google Scholar 

  48. Cunningham, P. D.; McCreary, K. M.; Jonker, B. T. Auger recombination in chemical vapor deposition-grown monolayer WS2. J. Phys. Chem. Lett.2016, 7, 5242–5246.

    Article  CAS  Google Scholar 

  49. Danovich, M.; Zólyomi, V.; Fal’ko, V. I.; Aleiner, I. L. Auger recombination of dark excitons in WS2 and WSe2 monolayers. 2D Mater.2016, 3, 035011.

    Article  CAS  Google Scholar 

  50. Sun, D. Z.; Rao, Y.; Reider, G. A.; Chen, G. G.; You, Y. M.; Brézin, L.; Harutyunyan, A. R.; Heinz, T. F. Observation of rapid excitonexciton annihilation in monolayer molybdenum disulfide. Nano Lett.2014, 14, 5625–5629.

    Article  CAS  Google Scholar 

  51. Mouri, S.; Miyauchi, Y.; Toh, M.; Zhao, W. J.; Eda, G.; Matsuda, K. Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton-exciton annihilation. Phys. Rev. B2014, 90, 155449.

    Article  CAS  Google Scholar 

  52. Steinhoff, A.; Rösner, M.; Jahnke, F.; Wehling, T. O.; Gies, C. Influence of excited carriers on the optical and electronic properties of MoS2. Nano Lett.2014, 14, 3743–3748.

    Article  CAS  Google Scholar 

  53. Steinhoff, A.; Florian, M.; Rösner, M.; Lorke, M.; Wehling, T. O.; Gies, C.; Jahnke, F. Nonequilibrium carrier dynamics in transition metal dichalcogenide semiconductors. 2D Mater.2016, 3, 031006.

    Article  CAS  Google Scholar 

  54. Schmitt-Rink, S.; Chemla, D. S.; Miller, D. A. B. Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Phys. Rev. B1985, 32, 6601–6609.

    Article  CAS  Google Scholar 

  55. Robert, C.; Lagarde, D.; Cadiz, F.; Wang, G.; Lassagne, B.; Amand, T.; Balocchi, A.; Renucci, P.; Tongay, S.; Urbaszek, B. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys. Rev. B2016, 93, 205423.

    Article  CAS  Google Scholar 

  56. Steinhoff, A.; Florian, M.; Rösner, M.; Schönhoff, G.; Wehling, T. O.; Jahnke, F. Exciton fission in monolayer transition metal dichalcogenide semiconductors. Nat. Commun.2017, 8, 1166.

    Article  CAS  Google Scholar 

  57. Palummo, M.; Bernardi, M.; Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett.2015, 15, 2794–2800.

    Article  CAS  Google Scholar 

  58. Wang, H. N.; Zhang, C. J.; Chan, W. M.; Manolatou, C.; Tiwari, S.; Rana, F. Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2. Phys. Rev. B2016, 93, 045407.

    Article  CAS  Google Scholar 

  59. Nguyen, D. T.; Voisin, C.; Roussignol, P.; Roquelet, C.; Lauret, J. S.; Cassabois, G. Elastic exciton-exciton scattering in photoexcited carbon nanotubes. Phys. Rev. Lett.2011, 107, 127401.

    Article  CAS  Google Scholar 

  60. Yuma, B.; Berciaud, S.; Besbas, J.; Shaver, J.; Santos, S.; Ghosh, S.; Weisman, R. B.; Cognet, L.; Gallart, M.; Ziegler, M. et al. Biexciton, single carrier, and trion generation dynamics in single-walled carbon nanotubes. Phys. Rev. B2013, 87, 205412.

    Article  CAS  Google Scholar 

  61. Santos, S. M.; Yuma, B.; Berciaud, S.; Shaver, J.; Gallart, M.; Gilliot, P.; Cognet, L.; Lounis, B. All-optical trion generation in single-walled carbon nanotubes. Phys. Rev. Lett.2011, 107, 187401.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Q. H. X. gratefully acknowledges the support from Singapore Ministry of Education via AcRF Tier 3 Programme (No. MOE2018-T3-1-002) and Tier 2 project (No. MOE2017-T2-1-040), and Singapore National Research Foundation via NRF-ANR project (No. NRF2017-NRF-ANR005 2D-Chiral).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihua Xiong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhao, W., Du, W. et al. Dynamics of exciton energy renormalization in monolayer transition metal disulfides. Nano Res. 13, 1399–1405 (2020). https://doi.org/10.1007/s12274-020-2652-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2652-9

Keywords

Navigation