Skip to main content
Log in

Synergetic catalysis enhancement between H2O2 and TiO2 with single-electron-trapped oxygen vacancy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The TIO2-H2O2 system possesses excellent oxidation activity even under dark conditions. However, the mechanism of this process is unclear and inconsistent. In this work, the binary component system containing TiO2 nanoparticles (NPs) with single electron-trapped oxygen vacancy (SETOV, Vo) and H2O2 exhibit excellent oxidative performance for tetracycline, RhB, and MO even without light irradiation. We systematically investigated the mechanism for the high activity of the TIO2-H2O2 under dark condition. Reactive oxygen species (ROS) induced from H2O2 play a significant role in improving the catalytic degradation activities. X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) results firstly confirm that H2O2 is primarily activated by SETOVs derived from the TiO2 NPs through direct contribution of electrons, producing both 02-/·AOOH and ·OH, which are responsible for the excellent reactivity of TiO2-H2O2 system. This work not only provides a new perspective on the role of SETOVs playing in the H2O2 activation process, but also expands the application of TiO2 in environmental conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.

    Google Scholar 

  2. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    CAS  Google Scholar 

  3. Fujishima, A.; Zhang, X. T.; Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582.

    CAS  Google Scholar 

  4. Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 707, 2891–2959.

    Google Scholar 

  5. Xie, Y. J.; Zhang, X.; Ma, P. J.; Wu, Z. J.; Piao, L. Y. Hierarchical TiO2 photocatalysts with a one-dimensional heterojunction for improved photocatalytic activities. Nano Res. 2015, 8, 2092–2101.

    CAS  Google Scholar 

  6. Wang, M.; Zhen, W. L.; Tian, B.; Ma, J. T.; Lu, G. X. The inhibition of hydrogen and oxygen recombination reaction by halogen atoms on over-all water splitting over Pt-TiO2 photocatalyst. Appl. Catal. B: Environ. 2018, 236, 240–252.

    CAS  Google Scholar 

  7. Li, X.; Shi, J. L.; Hao, H. M.; Lang, X. J. Visible light-induced selective oxidation of alcohols with air by dye-sensitized TiO2 photocatalysis. Appl. Catal. B: Environ. 2018, 232, 260–267.

    CAS  Google Scholar 

  8. Wu, Z. J.; Cao, S.; Zhang, C.; Piao, L. Y. Effects of bulk and surface defects on the photocatalytic performance of size-controlled TiO2 nanoparticles. Nanotechnology 2017, 28, 275706.

    Google Scholar 

  9. Zhang, Y.; Cui, W. Q.; An, W. J.; Liu, L.; Liang, Y. H.; Zhu, Y. F. Combination of photoelectrocatalysis and adsorption for removal of bisphenol A over TiO2-graphene hydrogel with 3D network structure. Appl. Catal. B: Environ. 2018, 227, 36–46.

    Google Scholar 

  10. Zhang, C.; Wu, Z. J.; Liu, J. J.; Piao, L. Y.; Preparation of MoS2/TiO2 composite catalyst and its photocatalytic hydrogen production activity under UV irradiation. ActaPhys.-Chim. Sin. 2017, 33, 1492–1498.

    CAS  Google Scholar 

  11. Wang, Y. Y.; Yang, W. J.; Chen, X. J.; Wang, J.; Zhu, Y. F. Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer. Appl. Catal. B: Environ. 2018, 220, 337–347.

    CAS  Google Scholar 

  12. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.

    CAS  Google Scholar 

  13. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271.

    CAS  Google Scholar 

  14. Wei, Z.; Liu, D.; Wei, W. Q.; Chen, X. J.; Han, Q.; Yao, W. Q.; Ma, X. G.; Zhu, Y. F. Ultrathin TiO2(B) nanosheets as the inductive agent for transfrering H2O2 into superoxide radicals. ACS Appl. Mater. Interfaces 2017, 9, 15533–15540.

    CAS  Google Scholar 

  15. Sanchez, L. D.; Taxt-Lamolle, S. F. M.; Hole, E. O.; Krivokapic, A.; Sagstuen, E.; Haugen, H. J. TiO2 suspension exposed to H2O2 in ambient light or darkness: Degradation of methylene blue and EPR evidence for radical oxygen species. Appl. Catal. B: Environ. 2013, 142–143, 662–667.

    Google Scholar 

  16. Random, C.; Wongnawa, S.; Boonsin, P. Bleaching of methylene blueS by hydrated titanium dioxide. Science Asia 2004, 30, 149–156.

    CAS  Google Scholar 

  17. Zhang, A. Y.; Lin, T.; He, Y Y.; Mou, Y. X. Heterogeneous activation of H2O2 by defect-engineered TiO2-x single crystals for refractory pollutants degradation: A Fenton-like mechanism. J. Hazard. Mater. 2016, 311, 81–90.

    CAS  Google Scholar 

  18. Wiedmer, D.; Sagstuen, E.; Welch, K.; Haugen, H. J.; Tiainen, H. Oxidative power of aqueous non-irradiated TiO2 -H2O2 suspensions: Methylene blue degradation and the role of reactive oxygen species. Appl. Catal. B: Environ. 2016, 198, 9–15.

    CAS  Google Scholar 

  19. Zhou, C. J.; Luo, J. J.; Chen, Q. Q.; Jiang, Y. Z.; Dong, X. P.; Cui, F. M. Titanate nanosheets as highly efficient non-light-driven catalysts for degradation of organic dyes. Chem. Commun. 2015, 57, 10847–10849.

    Google Scholar 

  20. Li, J. L.; Zhang, M.; Guan, Z. J.; Li, Q. Y.; He, C. Q.; Yang, J. J. Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Appl. Catal. B: Environ. 2017, 206, 300–307.

    CAS  Google Scholar 

  21. Li, L. D.; Yan, J. Q.; Wang, T.; Zhao, Z. J.; Zhang, J.; Gong, J. L.; Guan, N. J. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881.

    Google Scholar 

  22. Yan, J. H.; Liu, P.; Ma, C. R.; Lin, Z. Y.; Yang, G. W. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating. Nanoscale 2016, 8, 8826–8838.

    CAS  Google Scholar 

  23. Guan, L.; Chen, X. B. Photoexcited charge transport and accumulation in anatase TiO2. ACS Appl. Energy Mater. 2018, 1, 4313–4320.

    CAS  Google Scholar 

  24. Cheng, X. L.; Hu, M.; Huang, R.; Jiang, J. S. HF-free synthesis of anatase TiO2 nanosheets with largely exposed and clean {001} facets and their enhanced rate performance as anodes of lithiumion battery. ACS Appl. Mater. Interfaces 2014, 6, 19176–19183.

    CAS  Google Scholar 

  25. Wu, Q.; Liu, M.; Wu, Z. J.; Li, Y. L.; Piao, L. Y. Is photooxidation activity of {001} facets truly lower than that of {101} facets for anatase TiO2 crystals? J. Phys. Chem. C 2012, 116, 26800–26804.

    CAS  Google Scholar 

  26. Liu, S. W.; Yu, J. G.; Wang, W. G. Effects of annealing on the microstructures and photoactivity of fluorinated N-doped TiO2. Phys. Chem. Chem. Phys. 2010, 12, 12308–12315.

    CAS  Google Scholar 

  27. Liao, J. H.; Shi, L. Y.; Yuan, S.; Zhao, Y.; Fang, J. H. Solvothermal synthesis of TiO2 nanocrystal colloids from peroxotitanate complex solution and their photocatalytic activities. J. Phys. Chem. C 2009, 113, 18778–18783.

    CAS  Google Scholar 

  28. Han, E.; Vijayarangamuthu, K.; Youn, J. S.; Park, Y. K.; Jung, S. C.; Jeon, K. J. Degussa P25 TiO2 modified with H2O2 under microwave treatment to enhance photocatalytic properties. Catal. Today 2018, 505, 305–312.

    Google Scholar 

  29. Singh, G. P.; Shrestha, K. M.; Nepal, A.; Klabunde, K. J.; Sorensen, C. M. Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting. Nanotechnology 2014, 25, 265701.

    CAS  Google Scholar 

  30. Tian, F.; Zhang, Y. P.; Zhang, J.; Pan, C. X. Raman spectroscopy: A new approach to measure the percentage of anatase TiO2 exposed (001) facets. J. Phys. Chem. C 2012, 116, 7515–7519.

    CAS  Google Scholar 

  31. Xia, T.; Zhang, C.; Oyler, N. A.; Chen, X. B. Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv. Mater. 2013, 25, 6905–6910.

    CAS  Google Scholar 

  32. Zou, J.; Gao, J. C.; Xie, F. Y. An amorphous TiO2 sol sensitized with H2O2 with the enhancement of photocatalytic activity. J. Alloys Compd. 2010, 497, 420–427.

    CAS  Google Scholar 

  33. Fu, D.; Huang, Y. J.; Zhang, X. T.; Kurniawan, T. A.; Ouyang, T. Uncovering potentials of integrated TiO2(B) nanosheets and H2O2 for removal of tetracycline from aqueous solution. J. Mol. Liq. 2017, 248, 112–120.

    CAS  Google Scholar 

  34. Chen, J.; Ding, Z. Y.; Wang, C.; Hou, H. S.; Zhang, Y.; Wang, C. W.; Zou, G. Q.; Ji, X. B. Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies. ACS Appl. Mater. Interfaces 2016, 8, 9142–9151.

    CAS  Google Scholar 

  35. Liu, W.; Liu, H. C.; Ai, Z. H. In-situ generated H2O2 induced efficient visible light photo-electrochemical catalytic oxidation of PCP-Na with TiO2. J. Hazard. Mater. 2015, 288, 97–103.

    CAS  Google Scholar 

  36. Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 318, 746–750.

    Google Scholar 

  37. Pan, X. Y.; Yang, M. Q.; Fu, X. Z.; Zhang, N.; Xu, Y. J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601–3614.

    CAS  Google Scholar 

  38. Dong, G. Y.; Wang, X.; Chen, Z. W.; Lu, Z. Y. Enhanced photocatalytic activity of vacuum-activated TiO2 induced by oxygen vacancies. Photochem. Photobiol, 2018, 94, 472–483.

    CAS  Google Scholar 

  39. Zeng, L.; Song, W. L.; Li, M. H.; Zeng, D. W.; Xie, C. S. Catalytic oxidation of formaldehyde on surface of H-TiO2/H-C-TiO2 without light illumination at room temperature. Appl. Catal. B: Environ. 2014, 147, 490–498.

    CAS  Google Scholar 

  40. Hou, L. L.; Zhang, M.; Guan, Z. J.; Li, Q. Y.; Yang, J. J. Effect of annealing ambience on the formation of surface/bulk oxygen vacancies in TiO2 for photocatalytic hydrogen evolution. Appl. Surf. Sci. 2018, 428, 640–647.

    CAS  Google Scholar 

  41. Occhiuzzi, M.; Cordischi, D.; De Rossi, S.; Ferraris, G.; Gazzoli, D.; Valigi, M. Pd-promoted WOx/ZrO2 catalysts: Characterization and catalytic activity for n-butane isomerization. Appl. Catal. A: General 2008, 351, 29–35.

    CAS  Google Scholar 

  42. Bedilo, A. F.; Plotnikov, M. A.; Mezentseva, N. V.; Volodin, A. M.; Zhidomirov, G. M.; Rybkin, I. M.; Klabunde, K. J. Superoxide radical anions on the surface of zirconia and sulfated zirconia: Formation mechanisms, properties and structure. Phys. Chem. Chem. Phys. 2005, 7, 3059–3069.

    CAS  Google Scholar 

  43. Wang, J. J.; Li, Z. J.; Li, X. B.; Fan, X. B.; Meng, Q. Y.; Yu, S.; Li, C. B.; Li, J. X.; Tung, C. H.; Wu, L. Z. Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation. ChemSusChem 2014, 7, 1468–1475.

    CAS  Google Scholar 

  44. Green, M. A.; Xu, J. L.; Liu, H. L.; Zhao, J. Y.; Li, K. X.; Liu, L.; Qin, H.; Zhu, Y. M.; Shen D. Z.; Chen, X. B. Terahertz absorption of hydrogenated TiO2 nanoparticles. Mater. Today Phys. 2018, 4, 64–69.

    Google Scholar 

  45. Green, M.; Liu, Z. Q.; Xiang, P.; Liu, Y.; Zhou, M. J.; Tan, X. Y.; Huang, F. Q.; Liu, L.; Chen, X. B. Doped, conductive Si02 nanoparticles for large microwave absorption. Light: Sci. Appl. 2018, 7, 87.

    Google Scholar 

  46. Wang, Y.; Meng, X. J.; Yu, X. L.; Zhang, M.; Yang, J. J. Recoverable visible light photocatalytic activity of wide band gap nanotubular titanic acid induced by H2O2-pretreatment. Appl. Catal. B: Environ. 2013, 138–139, 326–332.

    Google Scholar 

  47. Pi, L.; Yang, N.; Han, W.; Xiao, W.; Wang, D. H.; Xiong, Y.; Zhou, M.; Hou, H. B.; Mao, X. H. Heterogeneous activation of peroxy-monocarbonate by Co-Mn oxides for the efficient degradation of chlorophenols in the presence of a naturally occurring level of bicarbonate. Chem. Eng. J. 2018, 334, 1297–1308.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21703046 and 21972028) and the Ministry of Science and Technology of China (No. 2016YFF0203803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang Cao, Wenqing Yao or Lingyu Piao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Guo, K., Cao, S. et al. Synergetic catalysis enhancement between H2O2 and TiO2 with single-electron-trapped oxygen vacancy. Nano Res. 13, 551–556 (2020). https://doi.org/10.1007/s12274-020-2650-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2650-y

Keywords

Navigation