Skip to main content
Log in

Temperature- and thickness-dependence of robust out-of-plane ferroelectricity in CVD grown ultrathin van der Waals α-In2Se3 layers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) ferroelectric materials with unique structure and extraordinary optoelectrical properties have attracted intensive research in the field of nanoelectronic and optoelectronic devices, such as optical sensors, transistors, photovoltaics and non-volatile memory devices. However, the transition temperature of the reported ferroelectrics in 2D limit is generally low or slightly above room temperature, hampering their applications in high-temperature electronic devices. Here, we report the robust high-temperature ferroelectricity in 2D α-In2Se3, grown by chemical vapor deposition (CVD), exhibiting an out-of-plane spontaneous polarization reaching above 200 °C. The polarization switching and ferroelectric domains are observed in In2Se3 nanoflakes in a wide temperature range. The coercive field of the CVD grown ferroelectric layers illustrates a room-temperature thickness dependency and increases drastically when the film thickness decreases; whereas there is no large variance in the coercive field at different temperature from the samples with identical thickness. The results show the stable ferroelectricity of In2Se3 nanoflakes maintained at high temperature and open up the opportunities of 2D materials for novel applications in high-temperature nanoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui C. J.; Xue, F.; Hu W. J.; Li L. J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. NPJ 2D Mater. Appl.2018, 2, 18.

    Google Scholar 

  2. Zhang, Y.; Jie W. J.; Chen, P.; Liu W. W.; Hao J. H. Ferroelectric and piezoelectric effects on the optical process in advanced materials and devices. Adv. Mater.2018, 30, 1707007.

    Google Scholar 

  3. Jeong D. S.; Thomas, R.; Katiyar R. S.; Scott J. F.; Kohlstedt, H.; Petraru, A.; Hwang C. S. Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys.2012, 75, 076502.

    Google Scholar 

  4. Zheng F. G.; Xin, Y.; Huang, W.; Zhang J. X.; Wang X. F.; Shen M. R.; Dong, W.; Fang, L.; Bai Y. B.; Shen X. Q.; Hao J. H. Above 1% efficiency of a ferroelectric solar cell based on the Pb(Zr, Ti)O3 film. J. Mater. Chem. A2014, 2, 1363–1368.

    CAS  Google Scholar 

  5. Yang Z. B.; Hao J. H. Recent progress in 2D layered III-VI semiconductors and their heterostructures for optoelectronic device applications. Adv. Mater. Technol.2019, 4, 1900108.

    CAS  Google Scholar 

  6. Yuan S. G.; Yang Z. B.; Xie, C.; Yan, F.; Dai J. Y.; Lau S. P.; Chan H. L. W.; Hao J. H. Ferroelectric-driven performance enhancement of graphene field-effect transistors based on vertical tunneling heterostructures. Adv. Mater.2016, 28, 10048–10054.

    CAS  Google Scholar 

  7. Gao, P.; Zhang Z. Y.; Li M. Q.; Ishikawa, R.; Feng, B.; Liu H. J.; Huang Y. L.; Shibata, N.; Ma X. M.; Chen S. L. et al. Possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films. Nat. Commun.2017, 8, 15549.

    CAS  Google Scholar 

  8. Junquera, J.; Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 2003, 422, 506.

    CAS  Google Scholar 

  9. Lee, D.; Lu, H.; Gu, Y.; Choi S. Y.; Li S. D.; Ryu, S.; Paudel T. R.; Song, K.; Mikheev, E.; Lee, S. et al. Emergence of room-temperature ferroelectricity at reduced dimensions. Science2015, 349, 1314–1317.

    CAS  Google Scholar 

  10. Lang X. Y. and Jiang, Q. Size and interface effects on Curie temperature of perovskite ferroelectric nanosolids. J. Nanoparticle Res.2007, 9, 595–603.

    CAS  Google Scholar 

  11. Balachandran P. V.; Xue D. Z.; Lookman, T. Structure-curie temperature relationships in BaTiO3-based ferroelectric perovskites: Anomalous behavior of (Ba, Cd) TiO3 from DFT, statistical inference, and experiments. Phys. Rev. B.2016, 93, 144111.

    Google Scholar 

  12. Chang, K.; Liu J. W.; Lin H. C.; Wang, N.; Zhao, K.; Zhang A. M.; Jin, F.; Zhong, Y.; Hu X. P.; Duan W. H. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science2016, 353, 274–278.

    CAS  Google Scholar 

  13. Fei, R. X; Kang, W.; Yang, L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett.2016, 117, 097601.

    Google Scholar 

  14. Liu, F. C.; You, L.; Seyler K. L.; Li, X. B; Yu, P.; Lin, J. H; Wang, X. W; Zhou, J. D; Wang, H.; He H. Y. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun.2016, 7, 12357.

    CAS  Google Scholar 

  15. Yuan S. G.; Luo, X.; Chan H. L.; Xiao C. C.; Dai Y. W.; Xie M. H.; Hao J. H. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun.2019, 10, 1775.

    Google Scholar 

  16. Fei Z. Y.; Zhao W. J.; Palomaki T. A.; Sun, B.; Miller M. K.; Zhao Z. Y.; Yan J. Q.; Xu X. D.; Cobden D. H. Ferroelectric switching of a two-dimensional metal. Nature, 2018, 560, 336.

    CAS  Google Scholar 

  17. Ding W. J.; Zhu J. B.; Wang, Z.; Gao Y. F.; Xiao, D.; Gu, Y.; Zhang Z. Y.; Zhu W. G. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun.2016, 8, 14956.

    Google Scholar 

  18. Zhou, Y.; Wu, D.; Zhu Y. H.; Cho, Y.; He, Q.; Yang, X.; Herrera, K.; Chu Z. D.; Han, Y.; Downer M. C. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett.2017, 17, 5508–5513.

    CAS  Google Scholar 

  19. Cui C. J.; Hu W. J.; Yan X. X.; Addiego, C.; Gao W. P.; Wang, Y.; Wang, Z.; Li L. Z.; Cheng Y. C.; Li, P. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett.2018, 18, 1253–1258.

    CAS  Google Scholar 

  20. Poh S. M.; Tan S. J. R.; Wang, H.; Song, P.; Abidi I. H.; Zhao X. X.; Dan J. D.; Chen J. S.; Luo Z. T.; Pennycook S. J. et al. Molecular-beam epitaxy of two-dimensional In2Se3 and its giant electroresistance switching in ferroresistive memory junction. Nano Lett.2018, 18, 6340–6346.

    CAS  Google Scholar 

  21. Xue, F.; Hu W. J.; Lee K. C.; Lu L. S.; Zhang J. W.; Tang H. L.; Han, A.; Hsu W. T.; Tu S. B.; Chang W. H. et al. Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv. Funct. Mater.2018, 28, 1803738.

    Google Scholar 

  22. Xiao, J.; Zhu H. Y.; Wang, Y.; Feng, W.; Hu Y. X.; Dasgupta, A.; Han Y. M.; Wang, Y.; Muller D. A.; Martin L. W. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett.2018, 120, 227601.

    CAS  Google Scholar 

  23. Wan S. Y.; Li, Y.; Li, W.; Mao X. Y.; Zhu W. G.; Zeng H. L. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale2018, 10, 14885–14892.

    CAS  Google Scholar 

  24. Zhou J. D.; Zeng Q. S.; Lv D. H.; Sun L. F.; Niu, L.; Fu, W.; Liu F. C.; Shen Z. X.; Jin C. H.; Liu, Z. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett.2015, 15, 6400–6405.

    CAS  Google Scholar 

  25. Wan S. Y.; Li, Y.; Li, W.; Mao X. Y.; Wang, C.; Chen, C.; Dong J. Y.; Nie A. M.; Xiang J. Y.; Liu Z. Y. et al. Nonvolatile ferroelectric memory effect in ultrathin α-In2Se3. Adv. Funct. Mater.2019, 29, 1808606.

    Google Scholar 

  26. Küpers, M.; Konze P. M.; Meledin, A.; Mayer, J.; Englert, U.; Wuttig, M.; Dronskowski, R. Controlled crystal growth of indium selenide, In2Se3, and the crystal structures of α-In2Se3. Inorg. Chem.2018, 57, 11775–11781.

    Google Scholar 

  27. Dawber, M.; Chandra, P.; Littlewood P. B.; Scott J. F. Depolarization corrections to the coercive field in thin-film ferroelectrics. J. Phys.: Condens. Matter2003, 15, L393.

    Google Scholar 

  28. Jo J. Y.; Kim Y. S.; Noh T. W.; Yoon J. G.; Song T. K. Coercive fields in ultrathin BaTiO3 capacitors. Appl. Phys. Lett.2006, 89, 232909.

    Google Scholar 

  29. Ducharme, S.; Fridkin V. M.; Bune A. V.; Palto S. P.; Blinov L. M.; Petukhova N. N.; Yudin S. G. Intrinsic ferroelectric coercive field. Phys. Rev. Lett.2000, 84, 175.

    CAS  Google Scholar 

  30. Tao, X.; Gu, Y. Crystalline-crystalline phase transformation in two-dimensional In2Se3 thin layers. Nano Lett.2013, 13, 3501–3505.

    CAS  Google Scholar 

  31. Liu J.; Pantelides S. T. Pyroelectric response and temperature-induced α–β phase transitions in α-In2Se3 and other α-III2VI3 (III = Al, Ga, In; VI = S, Se) monolayers. 2D Mater.2018, 6, 025001.

    Google Scholar 

  32. Xu, B.; Xiang, H.; Xia Y. D.; Jiang, K.; Wan X. G.; He, J.; Yin, J.; Liu Z. G. Monolayer AgBiP2Se6: An atomically thin ferroelectric semiconductor with out-plane polarization. Nanoscale2017, 9, 8427–8434.

    CAS  Google Scholar 

  33. Gerra, G.; Tagantsev A. K.; Setter, N.; Parlinski, K. Ionic polarizability of conductive metal oxides and critical thickness for ferroelectricity in BaTiO3. Phys. Rev. Lett.2006, 96, 107603.

    CAS  Google Scholar 

  34. Qiao H. M.; He, C.; Wang Z. J.; Pang D. F.; Li X. Z.; Liu, Y.; Long X. F. Influence of Mn dopants on the electrical properties of Pb(In0.5Nb0.5) O3-PbTiO3 ferroelectric single crystals. RSC Adv.2017, 7, 32607–32612.

    CAS  Google Scholar 

  35. Zhang X. L.; Xu H. S.; Zhang Y. N. Temperature dependence of coercive field and fatigue in poly(vinylidene fluoride-trifluoroethylene) copolymer ultra-thin films. J. Phys. D: Appl. Phys.2011, 44, 155501.

    Google Scholar 

  36. Luo, J.; Sun, W.; Zhou, Z.; Bai, Y.; Wang Z. J.; Tian, G.; Chen D. Y.; Gao X. S.; Zhu F. Y.; Li J. F. Domain evolution and piezoelectric response across thermotropic phase boundary in (K, Na) NbO3-based epitaxial thin films. ACS Appl. Mater. Interfaces2017, 9, 13315–13322.

    CAS  Google Scholar 

  37. Ho C. H. Amorphous effect on the advancing of wide-range absorption and structural-phase transition in γ-In2Se3 polycrystalline layers. Sci. Rep.2014, 4, 4764.

    Google Scholar 

  38. Mbarki, R.; Haskins J. B.; Kinaci, A.; Cagin, T. Temperature dependence of flexoelectricity in BaTiO3 and SrTiO3 perovskite nanostructures. Phys. Lett. A2014, 378, 2181–2183.

    CAS  Google Scholar 

  39. Almahmoud, E.; Kornev, I.; Bellaiche, L. Dependence of Curie temperature on the thickness of an ultrathin ferroelectric film. Phys. Rev. B, 2010, 81, 064105.

    Google Scholar 

  40. Fong D. D.; Stephenson G. B.; Streiffer S. K.; Eastman J. A.; Auciello, O.; Fuoss P. H.; Thompson, C. Ferroelectricity in ultrathin perovskite films. Science2004, 304, 1650–1653.

    CAS  Google Scholar 

  41. Ishikawa, K.; Nomura, T.; Okada, N.; Takada, K. Size effect on the phase transition in PbTiO3 fine particles. Jpn. J. Appl. Phys.1996, 35, 5196–5198.

    CAS  Google Scholar 

  42. Simon, A.; Ravez, J.; Maisonneuve, V.; Payen, C.; Cajipe V. B. Paraelectric-ferroelectric transition in the lamellar thiophosphate CuInP2S6. Chem. Mater.1994, 6, 1575–1580.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the grant from Research Grants Council of Hong Kong (GRF No. PolyU 153033/17P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Hao.

Electronic Supplementary Material

12274_2020_2640_MOESM1_ESM.pdf

Temperature- and thickness-dependence of robust out-of-plane ferroelectricity in CVD grown ultrathin van der Waals α-In2Se3 layers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Io, W.F., Yuan, S., Pang, S.Y. et al. Temperature- and thickness-dependence of robust out-of-plane ferroelectricity in CVD grown ultrathin van der Waals α-In2Se3 layers. Nano Res. 13, 1897–1902 (2020). https://doi.org/10.1007/s12274-020-2640-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2640-0

Keywords

Navigation