Skip to main content
Log in

Self-magnetic-attracted NixFe(1−x)@NixFe(1−x)O nanoparticles on nickel foam as highly active and stable electrocatalysts towards alkaline oxygen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A facile self-magnetic-attracted approach was developed for highly active and stable NixFe(1−x)@NixFe(1−x)O/NF electrocatalysts towards alkaline oxygen evolution reaction. Firstly, a low-cost and scalable synthesis method was developed to synthesis 4–5 nm hydrophilic NixFe(1−x)@NixFe(1−x)O core–shell nanocrystals with superparamagnetism. Then, these NixFe(1−x)@NixFe(1−x)O nanoparticles (NPs) could be easily supported on nickel foam without any binders or additives. Optimized by the composition effect, the Ni0.7Fe0.3@Ni0.7Fe0.3O/NF exhibits excellent activity for oxygen evolution reaction (OER), requires only 215 mV at 10 mA·cm−2 and 260 mV at 100 mA·cm−2, with a Tafel slope of 47.4 mV·dec−1 in 1.0 M KOH. Moreover, the underlying mechanism was carefully studied by X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge spectra (XANES) analysis and density functional theory (DFT) calculations. Due to the self-magnetic attraction, the catalyst shows outstanding stability throughout the electrocatalysis, surpassing than most self-supported catalysts. This work provides a new strategy for the construction of highly active and stable OER electrocatalysts, the nearly monodisperse magnetic NixFe(1−x)@NixFe(1−x)O NPs also serve an ideal building block for fundamental research of nickel-iron based catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niu, S.; Jiang, W. J.; Wei, Z. X.; Tang, T.; Ma, J. M.; Hu, J. S.; Wan, L. J. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc.2019, 141, 7005–7013.

    Article  CAS  Google Scholar 

  2. Yu, L.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Yu, F.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci.2017, 10, 1820–1827.

    Article  CAS  Google Scholar 

  3. Liu, G.; Gao, X. S.; Wang, K. F.; He, D. Y.; Li, J. P. Mesoporous nickel–iron binary oxide nanorods for efficient electrocatalytic water oxidation. Nano Res.2017, 10, 2096–2105.

    Article  CAS  Google Scholar 

  4. Liu, J. L.; Zhu, D. D.; Ling, T.; Vasileff, A.; Qiao, S. Z. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy2017, 40, 264–273.

    Article  CAS  Google Scholar 

  5. Zhou, D. J.; Jia, Y.; Duan, X. X.; Tang, J. L.; Xu, J.; Liu, D.; Xiong, X. Y.; Zhang, J. M.; Luo, J.; Zheng, L. R. et al. Breaking the symmetry: Gradient in NiFe layered double hydroxide nanoarrays for efficient oxygen evolution. Nano Energy2019, 60, 661–666.

    Article  CAS  Google Scholar 

  6. Luo, M.; Cai, Z.; Wang, C.; Bi, Y. M.; Qian, L.; Hao, Y. C.; Li, L.; Kuang, Y.; Li, Y. P.; Lei, X. D. et al. Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen evolution. Nano Res.2017, 10, 1732–1739.

    Article  CAS  Google Scholar 

  7. Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc.1987, 134, 377–384.

    Article  CAS  Google Scholar 

  8. Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science2013, 340, 60–63.

    Article  CAS  Google Scholar 

  9. Lu, X. F.; Gu, L. F.; Wang, J. W.; Wu, J. X.; Liao, P. Q.; Li, G. R. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater.2017, 29, 1604437.

    Article  Google Scholar 

  10. Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc.2018, 140, 3876–3879.

    Article  CAS  Google Scholar 

  11. Cai, Z.; Zhou, D. J.; Wang, M. Y.; Bak, S. M.; Wu, Y. S.; Wu, Z. S.; Tian, Y.; Xiong, X. Y.; Li, Y. P.; Liu, W. et al. Introducing Fe2+ into nickel-iron layered double hydroxide: Local structure modulated water oxidation activity. Angew. Chem., Int. Ed.2018, 57, 9392–9396.

    Article  CAS  Google Scholar 

  12. Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater.2019, 1, e1806326.

    Google Scholar 

  13. Liang, X.; Wang, X.; Zhuang, J.; Chen, Y.; Wang, D.; Li, Y. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv. Funct. Mater.2006, 16, 1805–1813.

    Article  CAS  Google Scholar 

  14. Zhu, H. Y.; Zhang, S.; Huang, Y. X.; Wu, L. H.; Sun, S. H. Monodisperse MxFe3–xO4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction. Nano Lett.2013, 13, 2947–2951.

    Article  CAS  Google Scholar 

  15. Zhuang, Z. B.; Sheng, W. C.; Yan, Y. S. Synthesis of monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Adv. Mater.2014, 26, 3950–3955.

    Article  CAS  Google Scholar 

  16. Mohamed, R.; Cheng, X.; Fabbri, E.; Levecque, P.; Kötz, R.; Conrad, O.; Schmidt, T. J. Electrocatalysis of perovskites: The influence of carbon on the oxygen evolution activity. J. Electrochem. Soc.2015, 162, F579–F586.

    Article  CAS  Google Scholar 

  17. Xia, C.; Jiang, Q.; Zhao, C.; Hedhili, M. N.; Alshareef, H. N. Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv. Mater.2016, 28, 77–85.

    Article  CAS  Google Scholar 

  18. Yan, Z. H.; Sun, H. M.; Chen, X.; Liu, H. H.; Zhao, Y. R.; Li, H. X.; Xie, W.; Cheng, F. Y.; Chen, J. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nat. Commun.2018, 9, 2373.

    Article  Google Scholar 

  19. Ma, T. Y.; Dai, S.; Qiao, S. Z. Self-supported electrocatalysts for advanced energy conversion processes. Mater. Today2016, 19, 265–273.

    Article  CAS  Google Scholar 

  20. Zhu, Y. P.; Liu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv. Funct. Mater.2015, 25, 7337–7347.

    Article  CAS  Google Scholar 

  21. Zhang, Q.; Zhong, H. X.; Meng, F. L.; Bao, D.; Zhang, X. B.; Wei, X. L. Three-dimensional interconnected Ni(Fe)OxHy nanosheets on stainless steel mesh as a robust integrated oxygen evolution electrode. Nano Res.2018, 11, 1294–1300.

    Article  CAS  Google Scholar 

  22. Zhou, J. Q.; Yu, L.; Zhu, Q. C.; Huang, C. Q.; Yu, Y. Defective and ultrathin NiFe LDH nanosheets decorated on V-doped Ni3S2 nanorod arrays: A 3D core–shell electrocatalyst for efficient water oxidation. J. Mater. Chem. A2019, 7, 18118–18125.

    Article  CAS  Google Scholar 

  23. Wang, Y. Q.; Li, Y. M.; Ding, L. P.; Chen, Z.; Ong, A.; Lu, W. H.; Herng, T. S.; Li, X. W.; Ding, J. NiFe (sulfur)oxyhydroxide porous nanoclusters/Ni foam composite electrode drives a large-currentdensity oxygen evolution reaction with an ultra-low overpotential. J. Mater. Chem. A2019, 7, 18816–18822.

    Article  CAS  Google Scholar 

  24. Pi, Y. C.; Shao, Q.; Wang, P. T.; Lv, F.; Guo, S. J.; Guo, J.; Huang, X. Q. Trimetallic oxyhydroxide coralloids for efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed.2017, 56, 4502–4506.

    Article  CAS  Google Scholar 

  25. Liu, B.; Zhao, Y. F.; Peng, H. Q.; Zhang, Z. Y.; Sit, C. K.; Yuen, M. F.; Zhang, T. R.; Lee, C. S.; Zhang, W. J. Nickel-cobalt diselenide 3D mesoporous nanosheet networks supported on Ni foam: An all-pH highly efficient integrated electrocatalyst for hydrogen evolution. Adv. Mater.2017, 29, 1606521.

    Article  Google Scholar 

  26. Zhang, H. J.; Li, X. P.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S. L.; Maijenburg, A. W.; Wehrspohn, R. B. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater.2018, 28, 1706847.

    Article  Google Scholar 

  27. Miao, M.; Hou, R. Z.; Qi, R. J.; Yan, Y.; Gong, L. Q.; Qi, K.; Liu, H. F.; Xia, B. Y. Surface evolution and reconstruction of oxygen-abundant FePi/NiFeP synergy in NiFe phosphides for efficient water oxidation. J. Mater. Chem. A2019, 7, 18925–18931.

    Article  CAS  Google Scholar 

  28. Li, P. S.; Duan, X. X.; Kuang, Y.; Li, Y. P.; Zhang, G. X.; Liu, W.; Sun, X. M. Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation. Adv. Energy Mater.2018, 8, 1703341.

    Article  Google Scholar 

  29. Song, F.; Busch, M. M.; Lassalle-Kaiser, B.; Hsu, C. S.; Petkucheva, E.; Bensimon, M.; Chen, H. M.; Corminboeuf, C.; Hu, X. L. An unconventional iron nickel catalyst for the oxygen evolution reaction. ACS Cent. Sci.2019, 5, 558–568.

    Article  CAS  Google Scholar 

  30. Zhang, C.; Chen, B. H.; Mei, D. H.; Liang, X. The OH-driven synthesis of Pt-Ni nanocatalysts with atomic segregation for alkaline hydrogen evolution reaction. J. Mater. Chem. A2019, 7, 5475–5481.

    Article  CAS  Google Scholar 

  31. [31] García-Muelas, R.; Li, Q.; López, N. Density functional theory comparison of methanol decomposition and reverse reactions on metal surfaces. ACS Catal. 2015, 5, 1027–1036.

    Article  Google Scholar 

  32. Li, N.; Bediako, D. K.; Hadt, R. G.; Hayes, D.; Kempa, T. J.; Von Cube, F.; Bell, D. C.; Chen, L. X.; Nocera, D. G. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films. Proc. Natl. Acad. Sci. USA2017, 114, 1486–1491.

    Article  CAS  Google Scholar 

  33. Huang, J. Z.; Han, J. C.; Wang, R.; Zhang, Y. Y.; Wang, X. J.; Zhang, X. H.; Zhang, Z. H.; Zhang, Y. M.; Song, B.; Jin, S. Improving electrocatalysts for oxygen evolution using NixFe3–xO4/Ni hybrid nanostructures formed by solvothermal synthesis. ACS Energy Lett.2018, 3, 1698–1707.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) (No. 21571012) and the National Key Research and Development Program of China (No. 2018YFB1502401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Liang.

Electronic Supplementary Material

12274_2020_2630_MOESM1_ESM.pdf

Self-magnetic-attracted NixFe(1−x)@NixFe(1−x)O nanoparticles on nickel foam as highly active and stable electrocatalysts towards alkaline oxygen evolution reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Liang, X. Self-magnetic-attracted NixFe(1−x)@NixFe(1−x)O nanoparticles on nickel foam as highly active and stable electrocatalysts towards alkaline oxygen evolution reaction. Nano Res. 13, 461–466 (2020). https://doi.org/10.1007/s12274-020-2630-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2630-2

Keywords

Navigation