Skip to main content
Log in

Wireless phototherapeutic contact lenses and glasses with red light-emitting diodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Light-mediated therapeutics have attracted considerable attention as a method for the treatment of ophthalmologic diseases, such as age-related macular degeneration, because of their non-invasiveness and the effectiveness to ameliorate the oxidative stress of retinal cells. However, the current phototherapeutic devices are opaque, bulky, and tethered forms, so they are not feasible for use in continuous treatment during the patient’s daily life. Herein, we report wireless, wearable phototherapeutic devices with red light-emitting diodes for continuous treatments. Red light-emitting diodes were formed to be conformal to three-dimensional surfaces of glasses and contact lenses. Furthermore, fabricated light-emitting diodes had either transparency or a miniaturized size so that the user’s view is not obstructed. Also, these devices were operated wirelessly with control of the light intensity. In addition, in-vitro and in-vivo tests using human retinal epithelial cells and a live rabbit demonstrated the effectiveness and reliable operation as phototherapeutic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, J.; Salvatore, G. A.; Araki, H.; Chiarelli, A. M.; Xie, Z. Q.; Banks, A.; Sheng, X.; Liu, Y. H.; Lee, J. W.; Jang, K. I. et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci. Adv.2016, 2, e1600418.

    Article  Google Scholar 

  2. Son, D.; Kang, J.; Vardoulis, O.; Kim, Y.; Matsuhisa, N.; Oh, J. Y.; To, J. W. F.; Mun, J.; Katsumata, T.; Liu, Y. X. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol.2018, 13, 1057–1065.

    Article  CAS  Google Scholar 

  3. Kim, J.; Kim, M.; Lee, M. S.; Kim, K.; Ji, S.; Kim, Y. T.; Park, J.; Na, K.; Bae, K. H.; Kim, H. K. et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun.2017, 8, 14997.

    Article  Google Scholar 

  4. Park, J.; Kim, J.; Kim, S. Y.; Cheong, W. H.; Jang, J.; Park, Y. G.; Na, K.; Kim, Y. T.; Heo, J. H.; Lee, C. Y. et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 2018, 4, eaap9841.

    Article  CAS  Google Scholar 

  5. Xu, J. W.; Xue, Y. Y.; Hu, G. Y.; Lin, T. Y.; Gou, J. X.; Yin, T.; He, H. B.; Zhang, Y.; Tang, X. A comprehensive review on contact lens for ophthalmic drug delivery. J. Control. Release2018, 281, 97–118.

    Article  CAS  Google Scholar 

  6. Ferlauto, L.; Leccardi, M. J. I. A.; Chenais, N. A. L.; Gilliéron, S. C. A.; Vagni, P.; Bevilacqua, M.; Wolfensberger, T. J.; Sivula, K.; Ghezzi, D. Design and validation of a foldable and photovoltaic wide-field Epiretinal prosthesis. Nat. Commun.2018, 9, 992.

    Article  CAS  Google Scholar 

  7. Flores, T.; Huang, T.; Bhuckory, M.; Ho, E.; Chen, Z. J.; Dalal, R.; Galambos, L.; Kamins, T.; Mathieson, K.; Palanker, D. Honeycomb-shaped electro-neural interface enables cellular-scale pixels in subretinal prosthesis. Sci. Rep.2019, 9, 10657.

    Article  CAS  Google Scholar 

  8. Ledesma, H. A.; Li, X. J.; Carvalho-de-Souza, J. L.; Wei, W.; Bezanilla, F.; Tian, B. Z. An atlas of nano-enabled neural interfaces. Nat. Nanotechnol.2019, 14, 645–657.

    Article  CAS  Google Scholar 

  9. Luo, Z. Q.; Weiss, D. E.; Liu, Q. Y.; Tian, B. Z. Biomimetic approaches toward smart bio-hybrid systems. Nano Res.2018, 11, 3009–3030.

    Article  CAS  Google Scholar 

  10. Fu, R. X.; Luo, W. H.; Nazempour, R.; Tan, D. X.; Ding, H.; Zhang, K. Y.; Yin, L.; Guan, J. S.; Sheng, X. Implantable and biodegradable poly(L-lactic acid) fibers for optical neural interfaces. Adv. Opt. Mater.2018, 6, 1700941.

    Article  CAS  Google Scholar 

  11. Lee, H. E.; Choi, J. H.; Lee, S. H.; Jeong, M.; Shin, J. H.; Joe, D. J.; Kim, D. H.; Kim, C. W.; Park, J. H.; Lee, J. H. et al. Monolithic flexible vertical GaN light-emitting diodes for a transparent wireless brain optical stimulator. Adv. Mater.2018, 30, 1800649.

    Article  CAS  Google Scholar 

  12. Gutruf, P.; Krishnamurthi, V.; Vázquez-Guardado, A.; Xie, Z. Q.; Banks, A.; Su, C. J.; Xu, Y. S.; Haney, C. R.; Waters, E. A.; Kandela, I. et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nat. Electron.2018, 1, 652–660.

    Article  Google Scholar 

  13. Vijayaraghavan, P.; Liu, C. H.; Vankayala, R.; Chiang, C. S.; Hwang, K. C. Designing multi-branched gold nanoechinus for NIR light activated dual modal photodynamic and photothermal therapy in the second biological window. Adv. Mater.2014, 26, 6689–6695.

    Article  CAS  Google Scholar 

  14. Greco, M.; Guida, G.; Perlino, E.; Marra, E.; Quagliariello, E. Increase in RNA and protein synthesis by mitochondria irradiated with helium-neon laser. Biochem. Biophys. Res. Commun.1989, 163, 1428–1434.

    Article  CAS  Google Scholar 

  15. Karu, T. I.; Kolyakov, S. F. Exact action spectra for cellular responses relevant to phototherapy. Photomed. Laser Surg.2005, 23, 355–361.

    Article  CAS  Google Scholar 

  16. Rojas, J. C.; Gonzalez-Lima, F. Low-level light therapy of the eye and brain. Eye Brain2011, 3, 49–67.

    Google Scholar 

  17. Mehta, S. Age-related macular degeneration. Prim. Care: Clin. Office Pract.2015, 42, 377–391.

    Article  Google Scholar 

  18. Ao, J.; Wood, J. P. M.; Chidlow, G.; Gillies, M. C.; Casson, R. J. Retinal pigment epithelium in the pathogenesis of age-related macular degeneration and photobiomodulation as a potential therapy? Clin. Exp. Ophthalmol.2018, 46, 670–686.

    Article  Google Scholar 

  19. Ferraresi, C.; Parizotto, N. A.; de Sousa, M. V. P.; Kaippert, B.; Huang, Y. Y.; Koiso, T.; Bagnato, V. S.; Hamblin, M. R. Light-emitting diode therapy in exercise-trained mice increases muscle performance, cytochrome C oxidase activity, ATP and cell proliferation. J. Biophoton.2015, 8, 740–754.

    Article  CAS  Google Scholar 

  20. Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science2010, 327, 1603–1607.

    Article  CAS  Google Scholar 

  21. White, M. S.; Kaltenbrunner, M.; Głowacki, E. D.; Gutnichenko, K.; Kettlgruber, G.; Graz, I.; Aazou, S.; Ulbricht, C.; Egbe, D. A. M.; Miron, M. C. et al. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics2013, 7, 811–816.

    Article  CAS  Google Scholar 

  22. An, H. S.; Park, Y. G.; Kim, K.; Nam, Y. S.; Song, M. H.; Park, J. U. High-resolution 3D printing of freeform, transparent displays in ambient air. Adv. Sci.2019, 6, 1901603.

    Article  CAS  Google Scholar 

  23. An, B. W.; Gwak, E. J.; Kim, K.; Kim, Y. C.; Jang, J.; Kim, J. Y.; Park, J. U. Stretchable, transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability. Nano Lett.2016, 16, 471–478.

    Article  CAS  Google Scholar 

  24. Rutar, M.; Natoli, R.; Albarracin, R.; Valter, K.; Provis, J. 670-nm light treatment reduces complement propagation following retinal degeneration. J. Neuroinflammation2012, 9, 257.

    CAS  Google Scholar 

  25. Eells, J. T.; Wong-Riley, M. T. T.; VerHoeve, J.; Henry, M.; Buchman, E. V.; Kane, M. P.; Gould, L. J.; Das, R.; Jett, M.; Hodgson, B. D. et al. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion2004, 4, 559–567.

    Article  CAS  Google Scholar 

  26. Silveira, P. C. L.; Ferreira, K. B.; da Rocha, F. R.; Pieri, B. L. S.; Pedroso, G. S.; de Souza, C. T.; Nesi, R. T.; Pinho, R. A. Effect of low-power laser (LPL) and light-emitting diode (LED) on inflammatory response in burn wound healing. Inflammation2016, 39, 1395–1404.

    Article  CAS  Google Scholar 

  27. Qu, C.; Cao, W.; Fan, Y. C.; Lin, Y. Near-infrared light protect the photoreceptor from light-induced damage in rats. In Retinal Degenerative Diseases. Anderson, R. E.; Hollyfield, J. G.; LaVail, M. M., Eds.; Springer: New York, 2010; pp 365–374.

    Chapter  Google Scholar 

  28. Fuma, S.; Murase, H.; Kuse, Y.; Tsuruma, K.; Shimazawa, M.; Hara, H. Photobiomodulation with 670 nm light increased phagocytosis in human retinal pigment epithelial cells. Mol. Vis.2015, 21, 883–892.

    Google Scholar 

  29. Begum, R.; Powner, M. B.; Hudson, N.; Hogg, C.; Jeffery, G. Treatment with 670 nm light up regulates cytochrome C oxidase expression and reduces inflammation in an age-related macular degeneration model. PLoS One2013, 8, e57828.

    Article  CAS  Google Scholar 

  30. Albarracin, R.; Eells, J.; Valter, K. Photobiomodulation protects the retina from light-induced photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci.2011, 52, 3582–3592.

    Article  Google Scholar 

  31. Sparrow, J. R.; Parish, C. A.; Hashimoto, M.; Nakanishi, K. A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest. Ophthalmol. Vis. Sci.1999, 40, 2988–2995.

    CAS  Google Scholar 

  32. Bergmann, M.; Schütt, F.; Holz, F. G.; Kopitz, J. Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration. FASEB J.2004, 18, 562–564.

    Article  CAS  Google Scholar 

  33. Finnemann, S. C.; Leung, L. W.; Rodriguez-Boulan, E. The lipofuscin component A2E selectively inhibits phagolysosomal degradation of photoreceptor phospholipid by the retinal pigment epithelium. Proc. Natl. Acad. Sci. USA2002, 99, 3842–3847.

    Article  CAS  Google Scholar 

  34. Sparrow, J. R.; Zhou, J. L.; Ben-Shabat, S.; Vollmer, H.; Itagaki, Y.; Nakanishi, K. Involvement of oxidative mechanisms in blue-light-induced damage to A2E-Laden RPE. Invest. Ophthalmol. Vis. Sci.2002, 43, 1222–1227.

    Google Scholar 

  35. Mehta, J. S.; Futter, C. E.; Sandeman, S. R.; Faragher, R. G. A. F.; Hing, K. A.; Tanner, K. E.; Allan, B. D. S. Hydroxyapatite promotes superior keratocyte adhesion and proliferation in comparison with current keratoprosthesis skirt materials. Br. J. Ophthalmol.2005, 89, 1356–1362.

    Article  CAS  Google Scholar 

  36. Chen, G. Z.; Chan, I. S.; Lam, D. C. C. Capacitive contact lens sensor for continuous non-invasive intraocular pressure monitoring. Sens. Actuators A: Phys.2013, 203, 112–118.

    Article  CAS  Google Scholar 

  37. Salvatore, G. A.; Münzenrieder, N.; Kinkeldei, T.; Petti, L.; Zysset, C.; Strebel, I.; Büthe, L.; Tröster, G. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nat. Commun.2014, 5, 2982.

    Article  CAS  Google Scholar 

  38. Rim, Y. S.; Bae, S. H.; Chen, H. J.; Yang, J. L.; Kim, J.; Andrews, A. M.; Weiss, P. S.; Yang, Y.; Tseng, H. R. Printable ultrathin metal oxide semiconductor-based conformal biosensors. ACS Nano2015, 9, 12174–12181.

    Article  CAS  Google Scholar 

  39. Lee, M. S.; Lee, K.; Kim, S. Y.; Lee, H.; Park, J.; Choi, K. H.; Kim, H. K.; Kim, D. G.; Lee, D. Y.; Nam, S. W. et al. High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett.2013, 13, 2814–2821.

    Article  CAS  Google Scholar 

  40. Jang, J.; Hyun, B. G.; Ji, S.; Cho, E.; An, B. W.; Cheong, W. H.; Park, J. U. Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Mater.2017, 9, e432.

    Article  CAS  Google Scholar 

  41. Park, J. U.; Hardy, M.; Kang, S. J.; Barton, K.; Adair, K.; Mukhopadhyay, D. K.; Lee, C. Y.; Strano, M. S.; Alleyne, A. G.; Georgiadis, J. G. et al. High-resolution electrohydrodynamic jet printing. Nat. Mater.2007, 6, 782–789.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science & ICT (MSIT) and the Ministry of Trade, Industry and Energy (MOTIE) of Korea through the National Research Foundation (2019R1A2B5B03069358 and 2016R1A5A1009926), the Bio & Medical Technology Development Program (2018M3A9F1021649), the Nano Material Technology Development Program (2015M3A7B4050308 and 2016M3A7B4910635), and the Industrial Technology Innovation Program (10080577). Also, the authors thank financial support by the Institute for Basic Science (IBS-R026-D1) and the Research Program (2018-22-0194) funded by Yonsei University. All in-vivo studies were conducted according to the guidelines of the National Institutes of Health for care and use of laboratory animals and with the approval of the Institute of Animal Care and Use Committee of UNIST (UNISTIACUC-16-19).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Kyun Kim or Jang-Ung Park.

Electronic Supplementary Material

Supplementary material, approximately 1.97 MB.

Supplementary material, approximately 1.33 MB.

Supplementary material, approximately 795 KB.

Wireless phototherapeutic contact lenses and glasses with red light-emitting diodes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, YG., Cha, E., An, H.S. et al. Wireless phototherapeutic contact lenses and glasses with red light-emitting diodes. Nano Res. 13, 1347–1353 (2020). https://doi.org/10.1007/s12274-019-2595-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2595-1

Keywords

Navigation