Skip to main content
Log in

In situ observation of temperature-dependent atomistic and mesoscale oxidation mechanisms of aluminum nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Oxidation is a universal process causing metals’ corrosion and degradation. While intensive researches have been conducted for decades, the detailed atomistic and mesoscale mechanisms of metal oxidation are still not well understood. Here using in situ environmental transmission electron microscopy (E-TEM) with atomic resolution, we revealed systematically the oxidation mechanisms of aluminum from ambient temperature to ~ 600 °C. It was found that an amorphous oxide layer formed readily once Al was exposed to air at room temperature. At ~ 150 °C, triangle-shaped Al2O3 lamellas grew selectively on gas/solid (oxygen/amorphous oxide layer) interface, however, the thickness of the oxide layer slowly increased mainly due to the inward diffusion of oxygen. As the temperature further increased, partial amorphous-to-crystallization transition was observed on the amorphous oxide film, resulting in the formation of highly dense nano-cracks in the oxide layer. At ~ 600 °C, fast oxidation process was observed. Lamellas grew into terraces on the oxide/gas interface, indicating that the high temperature oxidation is controlled by the outward diffusion of Al. Single or double/multi-layers of oxide nucleated at the corners of the terraces, forming dense γ’-Al2O3, which is a metastable oxide structure but may be stabilized at nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ermoline, A.; Dreizin, E. L. Equations for the Cabrera-Mott kinetics of oxidation for spherical nanoparticles. Chem. Phys. Lett.2011, 505, 47–50.

    Article  CAS  Google Scholar 

  2. Jeurgens, L. P. H.; Sloof, W. G.; Tichelaar, F. D.; Mittemeijer, E. J. Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum. J. Appl. Phys.2002, 92, 1649–1656.

    Article  CAS  Google Scholar 

  3. Behler, J.; Delley, B.; Lorenz, S.; Reuter, K.; Scheffler, M. Dissociation of O2 at Al(111): The role of spin selection rules. Phys. Rev. Lett.2005, 94, 036104.

    Article  Google Scholar 

  4. Starodub, D.; Gustafsson, T.; Garfunkel, E. The reaction of O2 with Al(110): A medium energy ion scattering study of nano-scale oxidation. Surf. Sci.2004, 552, 199–214.

    Article  CAS  Google Scholar 

  5. Baran, J. D.; Grönbeck, H.; Hellman, A. Mechanism for limiting thickness of thin oxide films on aluminum. Phys. Rev. Lett.2014, 112, 146103.

    Article  Google Scholar 

  6. Zhdanov, V. P.; Kasemo, B. Cabrera-Mott kinetics of oxidation of metal nanowires. Appl. Phys. Lett.2012, 100, 243105.

    Article  Google Scholar 

  7. Cai, N.; Zhou, G. W.; Müller, K.; Starr, D. E. Temperature and pressure dependent Mott potentials and their influence on self-limiting oxide film growth. Appl. Phys. Lett.2012, 101, 171605.

    Article  Google Scholar 

  8. Jones, D. E. G.; Turcotte, R.; Fouchard, R. C.; Kwok, Q. S. M.; Turcotte, A. M.; Abdel-Qader, Z. Hazard characterization of aluminum nanopowder compositions. Propell., Explos., Pyrotech.2003, 28, 120–131.

    Article  CAS  Google Scholar 

  9. Gertsman, V. Y.; Kwok, Q. S. M. TEM investigation of nanophase aluminum powder. Microsc. Microanal.2005, 11, 410–420.

    Article  CAS  Google Scholar 

  10. Jeurgens, L. P. H.; Sloof, W. G.; Tichelaar, F. D.; Mittemeijer, E. J. Structure and morphology of aluminium-oxide films formed by thermal oxidation of aluminium. Thin Solid Films2002, 418, 89–101.

    Article  CAS  Google Scholar 

  11. Campbell, T.; Kalia, R. K.; Nakano, A.; Vashishta, P.; Ogata, S.; Rodgers, S. Dynamics of oxidation of aluminum nanoclusters using variable charge molecular-dynamics simulations on parallel computers. Phys. Rev. Lett.1999, 82, 4866–4869.

    Article  CAS  Google Scholar 

  12. Sun, J.; Pantoya, M. L.; Simon, S. L. Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO3. Thermochim. Acta2006, 444, 117–127.

    Article  CAS  Google Scholar 

  13. Hasani, S.; Panjepour, M.; Shamanian, M. The oxidation mechanism of pure aluminum powder particles. Oxid. Met.2012, 78, 179–195.

    Article  CAS  Google Scholar 

  14. Zhang, S. S.; Dreizin, E. L. Reaction interface for heterogeneous oxidation of aluminum powders. J. Phys. Chem. C2013, 117, 14025–14031.

    Article  CAS  Google Scholar 

  15. Kolarik, V.; del Mar Juez-Lorenzo, M.; Fietzek, H. Oxidation of micro-sized spherical aluminium particles. Mater. Sci. Forum.2011, 696, 290–295.

    Article  CAS  Google Scholar 

  16. Rai, A.; Park, K.; Zhou, L.; Zachariah, M. R. Understanding the mechanism of aluminium nanoparticle oxidation. Combust. Theor. Model.2006, 10, 843–859.

    Article  CAS  Google Scholar 

  17. Litrico, G.; Proulx, P.; Gouriet, J. B.; Rambaud, P. Controlled oxidation of aluminum nanoparticles. Adv. Powder Technol.2015, 26, 1–7.

    Article  CAS  Google Scholar 

  18. Coulet, M. V.; Rufino, B.; Esposito, P. H.; Neisius, T.; Isnard, O.; Denoyel, R. Oxidation mechanism of aluminum nanopowders. J. Phys. Chem. C2015, 119, 25063–25070.

    Article  CAS  Google Scholar 

  19. Park, K.; Lee, D.; Rai, A.; Mukherjee, D.; Zachariah, M. R. Sizeresolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. J. Phys. Chem. B2005, 109, 7290–7299.

    Article  CAS  Google Scholar 

  20. Yuan, W. T.; Wang, Y.; Li, H. B.; Wu, H. L.; Zhang, Z.; Selloni A.; Sun, C. H. Real-time observation of reconstruction dynamics on TiO2(001) surface under oxygen via an environmental transmission electron microscope. Nano Lett.2016, 16, 132–137.

    Article  CAS  Google Scholar 

  21. Zhang, Z. J.; Fu, X. Q.; Mao, M. M.; Yu, Q.; Mao, S. X.; Li, J. X.; Zhang, Z. In situ observation of sublimation-enhanced magnesium oxidation at elevated temperature. Nano Res.2016, 9, 2796–2802.

    Article  CAS  Google Scholar 

  22. Snijders, P. C.; Jeurgens, L. P. H.; Sloof, W. G. Structural ordering of ultra-thin, amorphous aluminium-oxide films. Surf. Sci.2005, 589, 98–105.

    Article  CAS  Google Scholar 

  23. Flötotto, D.; Wang, Z. M.; Jeurgens, L. P. H.; Mittemeijer, E. J. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces. Appl. Phys. Lett.2014, 104, 091901.

    Article  Google Scholar 

  24. Trybula, M. E.; Korzhavyi, P. A. Atomistic simulations of Al(100) and Al(111) surface oxidation: Chemical and topological aspects of the oxide structure. J. Phys. Chem. C2019, 123, 334–346.

    Article  CAS  Google Scholar 

  25. Lee, B. J.; Lee, C. S.; Lee, J. C. Stress induced crystallization of amorphous materials and mechanical properties of nanocrystalline materials: A molecular dynamics simulation study. Acta Mater.2003, 51, 6233–6240.

    Article  CAS  Google Scholar 

  26. Jeurgens, L. P. H.; Sloof, W. G.; Tichelaar, F. D.; Mittemeijer, E. J. Composition and chemical state of the ions of aluminium-oxide films formed by thermal oxidation of aluminium. Surf. Sci.2002, 506, 313–332.

    Article  CAS  Google Scholar 

  27. Snijders, P. C.; Jeurgens, L. P. H.; Sloof, W. G. Structure of thin aluminium-oxide films determined from valence band spectra measured using XPS. Surf. Sci.2002, 496, 97–109.

    Article  CAS  Google Scholar 

  28. Elomari, S.; Boukhili, R.; Lloyd, D. J. Thermal expansion studies of prestrained Al2O3/Al metal matrix composite. Acta Mater.1996, 44, 1873–1882.

    Article  CAS  Google Scholar 

  29. Reichel, F.; Jeurgens, L. P. H.; Richter, G. van Aken, P. A.; Mittemeijer, E. J. The origin of high-mismatch orientation relationships for ultrathin oxide overgrowths. Acta Mater.2007, 55, 6027–6037.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Chinese 1000-Youth-Talent Plan (for Q. Y.), 111 project (No. B16042), the National Natural Science Foundation of China (No. 51671168) and the State Key Program for Basic Research in China (No. 2015CB65930).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Yu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Yan, J., Zhao, B. et al. In situ observation of temperature-dependent atomistic and mesoscale oxidation mechanisms of aluminum nanoparticles. Nano Res. 13, 183–187 (2020). https://doi.org/10.1007/s12274-019-2593-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2593-3

Keywords

Navigation