Skip to main content
Log in

Controlled oxidation of Ni for stress-free hole transport layer of large-scale perovskite solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The effect of the residual thermal stress of NiO films on the performance of an inverted type perovskite solar cell was studied. In this study, NiO films were grown on fluorine doped tin oxide (FTO) substrates of different surface roughness by thermally oxidizing Ni film and were tested as a hole transport layer for large-scale perovskite solar cells. Experimental and simulation results show that it is very important to suppress the appearance of the residual stress at the NiO-FTO interface during the oxidation of the Ni film for effective hole extraction. The Ni oxidation on the flat FTO film produced in-plane compressive stress in the NiO film due to the Ni film volume expansion. This led to the formation of defects including small blisters. These residual stress and defects increased leakage current through the NiO film, preventing holes from being selectively collected at the NiO-perovskite interface. However, when Ni was deposited and oxidized on the rough surface, the residual stress of the NiO film was negligible and its inherent high resistance was maintained. Stress-free NiO film is an excellent hole transport layer that stops the photogenerated electrons of the perovskite layer from moving to FTO. The improvements in the structural and electrical qualities of the NiO film by engineering the residual stress reduce the carrier recombination and increase the power conversion efficiency of the perovskite solar cells to 16.37%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leblebici, S. Y.; Leppert, L.; Li, Y. B.; Reyes-Lillo, S. E.; Wickenburg, S.; Wong, E.; Lee, J.; Melli, M.; Ziegler, D.; Angell, D. K. et al. Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite. Nat. Energy2016, 1, 16093.

    CAS  Google Scholar 

  2. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep.2012, 2, 591.

    Google Scholar 

  3. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater.2014, 13, 897–903.

    CAS  Google Scholar 

  4. Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature2013, 499, 316–319.

    CAS  Google Scholar 

  5. Ahn, N.; Son, D. Y.; Jang, I. H.; Kang, S. M.; Choi, M.; Park, N. G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc.2015, 137, 8696–8699.

    CAS  Google Scholar 

  6. Chen, B.; Yang, M. J.; Priya, S.; Zhu, K. Origin of J-V hysteresis in perovskite solar cells. J. Phys. Chem. Lett.2016, 7, 905–917.

    CAS  Google Scholar 

  7. Han, G. S.; Shim, H. W.; Lee, S.; Duff, M. L.; Lee, J. K. Low-temperature modification of ZnO nanoparticles film for electron-transport layers in perovskite solar cells. ChemSusChem2017, 10, 2425–2430.

    CAS  Google Scholar 

  8. Han, G. S.; Yoo, J. S.; Yu, F. D.; Duff, M. L.; Kang, B. K.; Lee, J. K. Highly stable perovskite solar cells in humid and hot environment. J. Mater. Chem. A2017, 5, 14733–14740.

    CAS  Google Scholar 

  9. Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci.2015, 8, 1602–1608.

    CAS  Google Scholar 

  10. Norrman, K.; Madsen, M. V.; Gevorgyan, S. A.; Krebs, F. C. Degradation patterns in water and oxygen of an inverted polymer solar cell. J. Am. Chem. Soc.2010, 132, 16883–16892.

    CAS  Google Scholar 

  11. Jørgensen, M.; Norrman, K.; Krebs, F. C. Stability/degradation of polymer solar cells. Sol. Eng. Mater. Sol. Cells2008, 92, 686–714.

    Google Scholar 

  12. Kwon, U.; Kim, B. G.; Nguyen, D. C.; Park, J. H.; Ha, N. Y.; Kim, S. J.; Ko, S. H.; Lee, S.; Lee, D.; Park, H. J. Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells. Sci. Rep.2016, 6, 30759.

    CAS  Google Scholar 

  13. Wang, K. C.; Jeng, J. Y.; Shen, P. S.; Chang, Y. C.; Diau, W. G. G.; Tsai, C. H.; Chao, T. Y.; Hsu, H. C.; Lin, P. Y.; Chen, P. et al. P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci. Rep.2014, 4, 4756.

    Google Scholar 

  14. Yin, X. T.; Guo, Y. X.; Xie, H. X.; Que, W. X.; Kong, L. B. Nickel oxide as efficient hole transport materials for perovskite solar cells. Sol. RRL2019, 3, 1900001.

    Google Scholar 

  15. Yin, X. T.; Que, M. D.; Xing, Y. L.; Que, W. X. High efficiency hysteresisless inverted planar heterojunction perovskite solar cells with a solutionderived NiOx hole contact layer. J. Mater. Chem. A2015, 3, 24495–24503.

    CAS  Google Scholar 

  16. Yin, X. W.; Yao, Z. B.; Luo, Q.; Dai, X. Z.; Zhou, Y.; Zhang, Y.; Zhou, Y. Y.; Luo, S. P.; Li, J. B.; Wang, N. et al. High efficiency inverted planar perovskite solar cells with solution-processed NiOx hole contact. ACS Appl. Mater. Interfaces2017, 9, 2439–2448.

    CAS  Google Scholar 

  17. Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater.2014, 24, 151–157.

    CAS  Google Scholar 

  18. Li, G. J.; Jiang, Y. B.; Deng, S. B.; Tam, A.; Xu, P.; Wong, M.; Kwok, H. S. Overcoming the limitations of sputtered nickel oxide for high-efficiency and large-area perovskite solar cells. Adv. Sci.2017, 4, 1700463.

    Google Scholar 

  19. Peng, Y. Y.; Cheng, Y. D.; Wang, C. H.; Zhang, C. J.; Xia, H. Y.; Huang, K. Q.; Tong, S. C.; Hao, X. T.; Yang, J. L. Fully doctor-bladed planar heterojunction perovskite solar cells under ambient condition. Org. Electron.2018, 58, 153–158.

    CAS  Google Scholar 

  20. Wang, T.; Ding, D.; Wang, X.; Zeng, R. R.; Liu, H.; Shen, W. Z. Highperformance inverted perovskite solar cells with mesoporous NiOx hole transport layer by electrochemical deposition. ACS Omega2018, 3, 18434–18443.

    CAS  Google Scholar 

  21. Seo, S.; Park, I. J.; Kim, M.; Lee, S.; Bae, C.; Jung, H. S.; Park, N. G.; Kim, J. Y.; Shin, H. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells. Nanoscale2016, 8, 11403–11412.

    CAS  Google Scholar 

  22. Pae, S. R.; Byun, S.; Kim, J.; Kim, M.; Gereige, I.; Shin, B. Improving uniformity and reproducibility of hybrid perovskite solar cells via a low-temperature vacuum deposition process for NiOx hole transport layers. ACS Appl. Mater. Interfaces2018, 10, 534–540.

    CAS  Google Scholar 

  23. Park, J. H.; Seo, J.; Park, S.; Shin, S. S.; Kim, Y. C.; Jeon, N. J.; Shin, H. W.; Ahn, T. K.; Noh, J. H.; Yoon, S. C. et al. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv. Mater.2015, 27, 4013–4019.

    CAS  Google Scholar 

  24. Mitra, R. Structural Intermetallics and Intermetallic Matrix Composites; CRC Press: Boca Raton, 2015.

    Google Scholar 

  25. Unutulmazsoy, Y.; Merkle, R.; Fischer, D.; Mannhart, J.; Maier, J. The oxidation kinetics of thin nickel films between 250 and 500 °C. Phys. Chem. Chem. Phys.2017, 19, 9045–9052.

    CAS  Google Scholar 

  26. Giovanardi, C.; di Bona, A.; Altieri, S.; Luches, P.; Liberati, M.; Rossi, F.; Valeri, S. Structure and morphology of ultrathin NiO layers on Ag(001). Thin Solid Films2003, 428, 195–200.

    CAS  Google Scholar 

  27. Liu, C.; Huntz, A. M.; Lebrun, J. L. Origin and development of residual stresses in the Ni-NiO system: In-situ studies at high temperature by X-ray diffraction. Mater. Sci. Eng. A1993, 160, 113–126.

    Google Scholar 

  28. Schade, H.; Smith, Z. E. Mie scattering and rough surfaces. Appl. Opt.1985, 24, 3221–3226.

    CAS  Google Scholar 

  29. González-Alcalde, A. K.; Méndez, E. R.; Terán, E.; Cuppo, F. L. S.; Olivares, C. J. A.; García-Valenzuela, A. Reflection of diffuse light from dielectric one-dimensional rough surfaces. J. Opt. Soc. Am. A2016, 33, 373–382.

    Google Scholar 

  30. Hutchinson, J. W. Stresses and Failure Modes in Thin films and Multilayers; Technical University of Denmark: Lyngby, 1996.

    Google Scholar 

  31. Nastasi, M.; Höchbauer, T.; Lee, J. K.; Misra, A.; Hirth, J. P. Nucleation and growth of platelets in hydrogen-ion-implanted silicon. Appl. Phys. Lett.2005, 86, 154102.

    Google Scholar 

  32. Lee, J. K.; Lin, Y.; Jia, Q. X.; Höchbauer, T.; Jung, H. S.; Shao, L.; Misra, A.; Nastasi, M. Role of strain in the blistering of hydrogen-implanted silicon. Appl. Phys. Lett.2006, 89, 101901.

    Google Scholar 

  33. Jamal, M. S.; Shahahmadi, S. A.; Chelvanathan, P.; Alharbi, H. F.; Karim, M. R.; Dar, M. A.; Luqman, M.; Alharthi, N. H.; Al-Harthi, Y. S.; Aminuzzaman, M. et al. Effects of growth temperature on the photovoltaic properties of RF sputtered undoped NiO thin films. Results Phys.2019, 14, 102360.

    Google Scholar 

  34. Mahalingam, T.; John, V. S.; Ravi, G.; Sebastian, P. J. Microstructural characterization of electrosynthesized ZnTe thin films. Cryst Res. Technol.2002, 37, 329–339.

    CAS  Google Scholar 

  35. Dabrowski, J.; Müssig, H. J. Silicon Surfaces and Formation of Interfaces: Basic Science in the Industrial World; World Scientific: Singapore, 2000; pp 414–416.

    Google Scholar 

  36. Tosha, K.; Iida, K. Residual Stress and Hardness Distributions Induced by Shot Peening; International Scientific Committee for Shot Peening: Tokyo, Japan, 1990; pp 379–388.

    Google Scholar 

  37. Chen, X.; Vlassak, J. J. Numerical study on the measurement of thin film mechanical properties by means of nanoindentation. J. Mater. Res.2001, 16, 2974–2982.

    CAS  Google Scholar 

  38. Pharr, G. M.; Oliver, W. C.; Brotzen, F. R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res.1992, 7, 613–617.

    CAS  Google Scholar 

  39. Wang, Z. G. Influences of sample preparation on the indentation size effect & nanoindentation pop-in in nickel. Ph.D. Dissertation, University of Tennessee, Knoxville, 2012.

    Google Scholar 

  40. Fasaki, I.; Koutoulaki, A.; Kompitsas, M.; Charitidis, C. Structural, electrical and mechanical properties of NiO thin films grown by pulsed laser deposition. Appl. Surf. Sci.2010, 257, 429–433.

    CAS  Google Scholar 

  41. De Los Santos Valladares, L.; Ionescu, A.; Holmes, S.; Barnes, C. H. W. Characterization of Ni thin films following thermal oxidation in air. J. Vac. Sci. Technol. B2014, 32, 051808.

    Google Scholar 

  42. Zhang, J.; Zhang, L.; Dong, Y.; Li, H. Y.; Tan, C. M.; Xia, G.; Tan, C. S. The dependency of TSV keep-out zone (KOZ) on Si crystal direction and liner material. In 2013 IEEE International 3D Systems Integration Conference, San Francisco, CA, USA, 2013.

    Google Scholar 

Download references

Acknowledgements

This work was supported from the Global Frontier R&D Program on Center for Multiscale Energy System, Republic of Korea (No. 2012M3A6A7054855) and National Science Foundation (NSF 1709307).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gill Sang Han or Jung-Kun Lee.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Roh, HS., Han, G.S. et al. Controlled oxidation of Ni for stress-free hole transport layer of large-scale perovskite solar cells. Nano Res. 12, 3089–3094 (2019). https://doi.org/10.1007/s12274-019-2556-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2556-8

Keywords

Navigation