Skip to main content
Log in

Single and multi domain buckled germanene phases on Al(111) surface

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The simultaneous formation of single domain (3×3) and multi domain (√7×√7)R(±19.1°) germanene phases on Al(111) surface in the sub-monolayer range was studied using scanning tunneling microscopy (STM) and density functional theory (DFT) based simulations. Experimental results revealed that both germanene phases nucleate and grow independently from each other and regardless of Al substrate temperature within significantly expanded range Ts = 27–200 °C. Our results unambiguously showed that STM images with hexagonal contrast yield correct-resolved structure for both germanene phases, while honeycomb contrast is a result of an artificial tip-induced STM resolution. First-principles calculations suggested atomic models with strongly buckled germanene (2×2)/Al(111)(3×3) and (√3×√3)R30°/Al(111)(√7×√7)R(±19.1°) with one of eight and one of six Ge atoms protruding upward respectively, that consistently describe the experimentally observed STM images both for single and multi domain surface phases. According to the DFT based simulations both germanene (2×2) and (√3×√3)R30° superstructures have a stretched lattice strain with respect to the ideal free-standing germanene by 6.2% and 13.9%, respectively. Hence, numerous small domains separated by domain boundaries in the (√3×√3)R307Al(111)(√7×√7)R(±19.1°) germanene phase tend to reduce the surface energy and prevent the formation of extended single domains, in contrast to the (2×2)/Al(111)(3×3) phase. However, our experimental results showed that the nucleation and growth of germanene on Al(111) surface yield strong modifications of Al surface even at room temperature (RT), which may be contributed to the formation of Al-Ge alloy due to Ge surface solid-states reactivity that was ignored in recent studies. It is already evident from our present findings that the role of Al atoms in the formation of (3×3) and (√7×√7)R(±19.1°) germanene phases is worthy to be carefully studied in the future, which could be an important knowledge for large-quantity fabrication of germanene on aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science2004, 306, 666–669.

    CAS  Google Scholar 

  2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature2005, 438, 197–200.

    CAS  Google Scholar 

  3. Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature2005, 438, 201–204.

    CAS  Google Scholar 

  4. Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett.2012, 108, 155501.

    Google Scholar 

  5. Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett.2012, 108, 245501.

    Google Scholar 

  6. Guzmán-Verri, G. G.; Lew Yan Voon, L. C. Electronic structure of silicon-based nanostructures. Phys. Rev. B2007, 76, 075131.

    Google Scholar 

  7. Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett.2009, 102, 236804.

    CAS  Google Scholar 

  8. Li, L. F.; Lu, S. Z.; Pan, J. B.; Qin, Z. H.; Wang, Y. Q.; Wang, Y. L.; Cao, G. Y.; Du, S. X.; Gao, H. J. Buckled germanene formation on Pt(111). Adv. Mater.2014, 26, 4820–4824.

    CAS  Google Scholar 

  9. Dávila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys.2014, 16, 095002.

    Google Scholar 

  10. Bampoulis, P.; Zhang, L.; Safaei, A.; Van Gastel, R.; Poelsema, B.; Zandvliet, H. J. W. Germanene termination of Ge2Pt crystals on Ge(110). J. Phys.: Condens. Matter2014, 26, 442001.

    CAS  Google Scholar 

  11. Rahman, M. S.; Nakagawa, T.; Mizuno, S. Germanene: Experimental study for graphene like two dimensional germanium. Evergreen2014, 1, 25–29.

    CAS  Google Scholar 

  12. Zhang, L.; Bampoulis, P.; Rudenko, A. N.; Yao, Q.; Van Houselt, A.; Poelsema, B.; Katsnelson, M. I.; Zandvliet, H. J. W. Structural and electronic properties of germanene on MoS2. Phys. Rev. Lett.2016, 116, 256804.

    CAS  Google Scholar 

  13. Dávila, M. E.; Le Lay, G. Few layer epitaxial germanene: A novel two-dimensional Dirac material. Sci. Rep.2016, 6, 20714.

    Google Scholar 

  14. Derivaz, M.; Dentel, D.; Stephan, R.; Hanf, M. C; Mehdaoui, A.; Sonnet, P.; Pirri, C. Continuous germanene layer on Al(111). Nano Lett.2015, 15, 2510–2516.

    CAS  Google Scholar 

  15. Stephan, R.; Hanf, M. C.; Derivaz, M.; Dentel, D.; Asensio, M. C.; Avila, J.; Mehdaoui, A.; Sonnet, P.; Pirri, C. Germanene on Al(111): Interface electronic states and charge transfer. J. Phys. Chem. C2016, 120, 1580–1585.

    CAS  Google Scholar 

  16. Stephan, R.; Derivaz, M.; Hanf, M. C.; Dentel, D.; Massara, N.; Mehdaoui, A.; Sonnet, P.; Pirri, C. Tip-induced switch of germanene atomic structure. J. Phys. Chem. Lett.2017, 8, 4587–4593.

    CAS  Google Scholar 

  17. Fang, J. D.; Zhao, P.; Chen, G. Germanene growth on Al(111): A case study of interface effect. J. Phys. Chem. C2018, 122, 18669–18681.

    CAS  Google Scholar 

  18. Endo, S.; Kubo, O.; Nakashima, N.; Iwaguma, S.; Yamamoto, R.; Kamakura, Y.; Tabata, H.; Katayama, M. √3×√3 germanene on Al(111) grown at nearly room temperature. Appl. Phys. Express2018, 11, 015502.

    Google Scholar 

  19. Wang, W. M.; Uhrberg, R. I. G. Coexistence of strongly buckled germanene phases on Al(111). Beilstein J. Nanotechnol.2017, 8, 1946–1951.

    CAS  Google Scholar 

  20. Zhu, F. F.; Chen, W. J.; Xu, Y.; Gao, C. L.; Guan, D. D.; Liu, C. H.; Qian, D.; Zhang, S. C.; Jia, J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater.2015, 14, 1020–1025.

    CAS  Google Scholar 

  21. Gou, J.; Kong, L. J.; Li, H.; Zhong, Q.; Li, W. B.; Cheng, P.; Chen, L.; Wu, K. H. Strain-induced band engineering in monolayer stanene on Sb(111). Phys. Rev. Mater.2017, 1, 054004.

    Google Scholar 

  22. Yuhara, J.; Fujii, Y.; Nishino, K.; Isobe, N.; Nakatake, M.; Xian, L.; Rubio, A.; Le Lay, G. Large area planar stanene epitaxially grown on Ag(111). 2D Mater.2018, 5, 025002.

    Google Scholar 

  23. Zhang, J. L.; Zhao, S. T.; Han, C.; Wang, Z. Z.; Zhong, S.; Sun, S.; Guo, R.; Zhou, X.; Gu, C. D.; Yuan, K. D. et al. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus. Nano Lett.2016, 16, 4903–4908.

    CAS  Google Scholar 

  24. Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem.2016, 8, 563–568.

    CAS  Google Scholar 

  25. Acun, A.; Zhang, L.; Bampoulis, P.; Farmanbar, M.; Van Houselt, A.; Rudenko, A. N.; Lingenfelder, M.; Brocks, G.; Poelsema, B.; Katsnelson, M. I. et al. Germanene: The germanium analogue of graphene. J. Phys.: Condens. Matter2015, 27, 443002.

    CAS  Google Scholar 

  26. Liu, C. C.; Feng, W. X.; Yao, Y. G. Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett.2011, 107, 076802.

    Google Scholar 

  27. Muzychenko, D. A.; Oreshkin, A. I.; Oreshkin, S. I.; Ustavschikov, S. S.; Putilov, A. V.; Aladyshkin, A. Y. The surface structures growth’s features caused by Ge adsorption on the Au(111) surface. JETP Lett.2017, 106, 217–222.

    CAS  Google Scholar 

  28. Wang, W.; Uhrberg, R. I. G. Investigation of the atomic and electronic structures of highly ordered two-dimensional germanium on Au(111). Phys. Rev. Mater.2017, 1, 074002.

    Google Scholar 

  29. Cantero, E. D.; Solis, L. M.; Tong, Y. F.; Fuhr, J. D.; Martiarena, M. L.; Grizzia, O.; Sáncheza, E. A. Growth of germanium on Au(111): Formation of germanene or intermixing of Au and Ge atoms? Phys. Chem. Chem. Phys.2017, 19, 18580–18586.

    CAS  Google Scholar 

  30. Yuhara, J.; Shimazu, H.; Ito, K.; Ohta, A.; Araidai, M.; Kurosawa, M.; Nakatake, M.; Le Lay, G. Germanene epitaxial growth by segregation through Ag(111) thin films on Ge(111). ACS Nano2018, 12, 11632–11637.

    CAS  Google Scholar 

  31. Lin, C. H.; Huang, A.; Pai, W. W.; Chen, W. C.; Chang, T. R.; Yukawa, R.; Cheng, C. M.; Mou, C. Y.; Matsuda, I.; Chiang, T. C. et al. Single-layer dual germanene phases on Ag(111). Phys. Rev. Mater.2018, 2, 024003.

    CAS  Google Scholar 

  32. Qin, Z. H.; Pan, J. B.; Lu, S. Z.; Shao, Y.; Wang, Y. L.; Du, S. X.; Gao, H. J.; Cao, G. Y. Direct evidence of dirac signature in bilayer germanene islands on Cu(111). Adv. Mater.2017, 29, 1606046.

    Google Scholar 

  33. Li, F. P.; Wei, W.; Lv, X. S.; Huang, B. B.; Dai, Y. Evolution of the linear band dispersion of monolayer and bilayer germanene on Cu(111). Phys. Chem. Chem. Phys.2017, 19, 22844–22851.

    CAS  Google Scholar 

  34. Gou, J.; Zhong, Q.; Sheng, S. X.; Li, W. B.; Cheng, P.; Li, H.; Chen, L.; Wu, K. H. Strained monolayer germanene with 1×1 lattice on Sb(111). 2D Mater.2016, 3, 045005.

    Google Scholar 

  35. Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum.2007, 78, 013705.

    CAS  Google Scholar 

  36. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev.1965, 140, A1133.

    Google Scholar 

  37. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865–3868.

    CAS  Google Scholar 

  38. Perdew, J. P.; Wang, Y. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. B1986, 33, 8800–8802.

    CAS  Google Scholar 

  39. Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter2002, 14, 2745–2779.

    CAS  Google Scholar 

  40. Troullier, N.; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B1991, 43, 1993–2006.

    CAS  Google Scholar 

  41. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B1976, 13, 5188–5192.

    Google Scholar 

  42. Tersoff, J.; Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett.1983, 50, 1998–2001.

    CAS  Google Scholar 

  43. Tersoff, J.; Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B1985, 31, 805–813.

    CAS  Google Scholar 

  44. Rohlfing, M.; Temirov, R.; Tautz, F. S. Adsorption structure and scanning tunneling data of a prototype organic-inorganic interface: PTCDA on Ag(111). Phys. Rev. B2007, 76, 115421.

    Google Scholar 

  45. Muzychenko, D. A.; Schouteden, K.; Houssa, M.; Savinov, S. V.; Van Haesendonck, C. Noninvasive embedding of single Co atoms in Ge(111)2×1 surfaces. Phys. Rev. B2012, 85, 125412.

    Google Scholar 

  46. Muzychenko, D. A.; Schouteden, K.; Van Haesendonck, C. Electronic and atomic structure of Co/Ge nanoislands on the Ge(111) surface. Phys. Rev. B2013, 88, 195436.

    Google Scholar 

  47. Herz, M.; Giessibl, F. J.; Mannhart, J. Probing the shape of atoms in real space. Phys. Rev. B2003, 68, 045301.

    Google Scholar 

  48. Chaika, A. N.; Orlova, N. N.; Semenov, V. N.; Postnova, E. Y.; Krasnikov, S. A.; Lazarev, M. G.; Chekmazov, S. V.; Aristov, V. Y.; Glebovsky, V. G.; Bozhko, S. I.; et al. Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy. Sci Rep2014, 4, 3742.

    CAS  Google Scholar 

  49. Seidl, A.; Görling, A.; Vogl, P.; Majewski, J. A.; Levy, M. Generalized Kohn-Sham schemes and the band-gap problem. Phys. Rev. B1996, 53, 3764–3774.

    CAS  Google Scholar 

  50. Cohen, A. J.; Mori-Sánchez, P.; Yang, W. T. Insights into current limitations of density functional theory. Science2008, 321, 792–794.

    CAS  Google Scholar 

Download references

Acknowledgements

The research in Moscow has been supported Russian Foundation for Basic Research (RFBR) grants and by the computing facilities of the M. V. Lomonosov Moscow State University (MSU) Research Computing Center. The research in Leuven has been supported by the Research Foundation-Flanders (FWO, Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy A. Muzychenko.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzychenko, D.A., Oreshkin, S.I., Panov, V.I. et al. Single and multi domain buckled germanene phases on Al(111) surface. Nano Res. 12, 2988–2996 (2019). https://doi.org/10.1007/s12274-019-2542-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2542-1

Keywords

Navigation