Skip to main content
Log in

All-in-one theranostic nanoplatform with controlled drug release and activated MRI tracking functions for synergistic NIR-II hyperthermia-chemotherapy of tumors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Real-time tracking drug release behavior is fundamentally important for avoiding adverse effects or unsuccessful treatment in personalize medical treatment. However, the development of a non-invasive drug reporting platform still remains challenging. Herein the design of a novel synthetic magnetic resonance imaging (MRI) agent for drug release tracking (SMART) is reported, which integrates photothermal core and paramagnetic ion/drug loading shell with a thermal valve in a hybrid structure. Through near-infrared (NIR)-II photothermal effect originating from inner Au-Cu9S5 nanohybrid core, burst release of drugs loaded in the mesoporous silica shell is achieved. The concomitant use of a phase change material not only prevents premature drug release, but also regulates heating effect, keeping local temperature below 45 °C, enabling synergistic chemotherapy and mild hyperthermia in vitro and in vivo. Furthermore, the drug release from SMART facilitates proton accessibility to the paramagnetic ions anchored inside mesopores channels, enhancing longitudinal T1 relaxation rate and displaying positive signal correlation to the amount of released drug, thus allowing non-invasive real-time monitoring of drug release event. The current study highlights the potential of designed MRI nanophores such as SMART for real-time and in-situ monitoring of drug delivery for precision theranostic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, C. A targeted approach to cancer imaging and therapy. Nat. Mater.2014, 13, 110–115.

    CAS  Google Scholar 

  2. Crawley, N.; Thompson, M.; Romaschin, A. Theranostics in the growing field of personalized medicine: An analytical chemistry perspective. Anal. Chem.2014, 86, 130–160.

    CAS  Google Scholar 

  3. El-Sawy, H. S.; Al-Abd, A. M.; Ahmed, T. A.; El-Say, K. M.; Torchilin, V. P. Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: Past, present, and future perspectives. ACS Nano2018, 12, 10636–10664.

    Google Scholar 

  4. Liu, Y.; Gong, C. S.; Dai, Y. L.; Yang, Z.; Yu, G. C.; Liu, Y. J.; Zhang, M. R.; Lin, L. S.; Tang, W.; Zhou, Z. J. In situ polymerization on nanoscale metal-organic frameworks for enhanced physiological stability and stimulus-responsive intracellular drug delivery. Biomaterials2019, 218, 119365.

    CAS  Google Scholar 

  5. Zheng, F. F.; Xiong, W. W.; Sun, S. S.; Zhang, P. H.; Zhu, J. J. Recent advances in drug release monitoring. Nanophotonics2019, 8, 391–413.

    CAS  Google Scholar 

  6. Moore, T.; Chen, H. Y.; Morrison, R.; Wang, F. L.; Anker, J. N.; Alexis, F. Nanotechnologies for noninvasive measurement of drug release. Mol. Pharmaceutics2014, 11, 24–39.

    CAS  Google Scholar 

  7. Lai, J. P.; Shah, B. P.; Garfunkel, E.; Lee, K. B. Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release. ACS Nano2013, 7, 2741–2750.

    CAS  Google Scholar 

  8. Tian, L. M.; Gandra, N.; Singamaneni, S. Monitoring controlled release of payload from gold nanocages using surface enhanced Raman scattering. ACS Nano2013, 7, 4252–4260.

    CAS  Google Scholar 

  9. Wu, X. M.; Sun, X. R.; Guo, Z. Q.; Tang, J. B.; Shen, Y. Q.; James, T. D.; Tian, H.; Zhu, W. H. In vivo and in situ tracking cancer chemotherapy by highly photostable NIR fluorescent theranostic prodrug. J. Am. Chem. Soc.2014, 136, 3579–3588.

    CAS  Google Scholar 

  10. Wang, R.; Zhou, L.; Wang, W. X.; Li, X. M.; Zhang, F. In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat. Commun.2017, 8, 14702.

    Google Scholar 

  11. Yu, X. J.; Yang, K.; Chen, X. Y.; Li, W. W. Black hollow silicon oxide nanoparticles as highly efficient photothermal agents in the second near-infrared window for in vivo cancer therapy. Biomaterials2017, 143, 120–129.

    CAS  Google Scholar 

  12. Liu, Z.; Ren, F.; Zhang, H.; Yuan, Q.; Jiang, Z. L.; Liu, H. H.; Sun, Q.; Li, Z. Boosting often overlooked long wavelength emissions of rare-earth nanoparticles for NIR-II fluorescence imaging of orthotopic glioblastoma. Biomaterials2019, 219, 119364.

    CAS  Google Scholar 

  13. Yang, Z.; Song, J. B.; Tang, W.; Fan, W. P.; Dai, Y. L.; Shen, Z. Y.; Lin, L. S.; Cheng, S. Y.; Liu, Y. J.; Niu, G. et al. Stimuli-responsive nanotheranostics for real-time monitoring drug release by photoacoustic imaging. Theranostics2019, 9, 526–536.

    Google Scholar 

  14. Bennett, K. M.; Jo, J. I.; Cabral, H.; Bakalova, R.; Aoki, I. MR imaging techniques for nano-pathophysiology and theranostics. Adv. Drug Delivery Rev.2014, 74, 75–94.

    CAS  Google Scholar 

  15. Janib, S. M.; Moses, A. S.; MacKay, J. A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Delivery Rev.2010, 62, 1052–1063.

    CAS  Google Scholar 

  16. Viglianti, B. L.; Abraham, S. A.; Michelich, C. R.; Yarmolenko, P. S.; MacFall, J. R.; Bally, M. B.; Dewhirst, M. W. In vivo Monitoring of tissue pharmacokinetics of liposome/drug using MRI: Illustration of targeted delivery. Magn. Reson. Med.2004, 51, 1153–1162.

    CAS  Google Scholar 

  17. Ponce, A. M.; Viglianti, B. L.; Yu, D. H.; Yarmolenko, P. S.; Michelich, C. R.; Woo, J.; Bally, M. B.; Dewhirst, M. W. Magnetic resonance imaging of temperature-sensitive liposome release: Drug dose painting and antitumor effects. JNCI, J. Natl. Cancer Inst.2007, 99, 53–63.

    CAS  Google Scholar 

  18. Davies, G. L.; Kramberger, I.; Davis, J. J. Environmentally responsive MRI contrast agents. Chem. Commun.2013, 49, 9704–9721.

    CAS  Google Scholar 

  19. Van Duijnhoven, S. M. J.; Robillard, M. S.; Langereis, S.; Grüll, H. Bioresponsive probes for molecular imaging: Concepts and in vivo applications. Contrast Media Mol. Imaging2015, 10, 282–308.

    CAS  Google Scholar 

  20. Han, Y. X.; Zhou, X. X.; Qian, Y.; Hu, H. J.; Zhou, Z. X.; Liu, X. R.; Tang, J. B.; Shen, Y. Q. Hypoxia-targeting dendritic MRI contrast agent based on internally hydroxy dendrimer for tumor imaging. Biomaterials2019, 213, 119195.

    CAS  Google Scholar 

  21. Gao, Z. Y.; Hou, Y.; Zeng, J. F.; Chen, L.; Liu, C. Y.; Yang, W. S.; Gao, M. Y. Tumor microenvironment-triggered aggregation of antiphagocytosis 99mTc-Labeled Fe3O4 nanoprobes for enhanced tumor imaging in vivo. Adv. Mater.2017, 29, 1701095.

    Google Scholar 

  22. Zhao, Z. L.; Fan, H. H.; Zhou, G. F.; Bai, H. R.; Liang, H.; Wang, R. W.; Zhang, X. B.; Tan, W. H. Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe. J. Am. Chem. Soc.2014, 136, 11220–11223.

    CAS  Google Scholar 

  23. Do, Q. N.; Ratnakar, J. S.; Kovács, Z.; Sherry, A. D. Redox- and hypoxia-responsive MRI contrast agents. ChemMedChem2014, 9, 1116–1129.

    CAS  Google Scholar 

  24. Fu, D. D.; Ding, X. G.; Wu, J.; Li, C. Y.; Wang, Q. B.; Jiang, J. Cationic polyelectrolyte mediated synthesis of MnO2-based core-shell structures as activatable MRI theranostic platform for tumor cell ablation. Part. Part. Syst. Charact.2018, 35, 1800078.

    Google Scholar 

  25. Kaittanis, C.; Shaffer, T. M.; Ogirala, A.; Santa, S.; Perez, J. M.; Chiosis, G.; Li, Y. M.; Josephson, L.; Grimm, J. Environment-responsive nanophores for therapy and treatment monitoring via molecular MRI quenching. Nat. Commun.2014, 5, 3384.

    Google Scholar 

  26. Zhao, Z. H.; Wang, X. M.; Zhang, Z. J.; Zhang, H.; Liu, H. Y.; Zhu, X. L.; Li, H.; Chi, X. Q.; Yin, Z. Y.; Gao, J. H. Real-time monitoring of arsenic trioxide release and delivery by activatable T1 imaging. ACS Nano2015, 9, 2749–2759.

    CAS  Google Scholar 

  27. Lu, J. X.; Sun, J. H.; Li, F. Y.; Wang, J.; Liu, J. N.; Kim, D.; Fan, C. H.; Hyeon, T.; Ling, D. S. Highly sensitive diagnosis of small hepatocellular carcinoma using pH-responsive iron oxide nanocluster assemblies. J. Am. Chem. Soc.2018, 140, 10071–10074.

    CAS  Google Scholar 

  28. Viger, M. L.; Sankaranarayanan, J.; de Gracia Lux, C.; Chan, M. N.; Almutairi, A. Collective activation of MRI agents via encapsulation and disease-triggered release. J. Am. Chem. Soc.2013, 135, 7847–7850.

    CAS  Google Scholar 

  29. Dong, Z. L.; Feng, L. Z.; Zhu, W. W.; Sun, X. Q.; Gao, M.; Zhao, H.; Chao, Y.; Liu, Z. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials2016, 110, 60–70.

    CAS  Google Scholar 

  30. He, Z. M.; Zhang, P. H.; Xiao, Y.; Li, J. J.; Yang, F.; Liu, Y.; Zhang, J. R.; Zhu, J. J. Acid-degradable gadolinium-based nanoscale coordination polymer: A potential platform for targeted drug delivery and potential magnetic resonance imaging. Nano Res.2018, 11, 929–939.

    CAS  Google Scholar 

  31. Liu, J. N.; Bu, J. W.; Bu, W.; Zhang, S. J.; Pan, L. M.; Fan, W. P.; Chen, F.; Zhou, L. P.; Peng, W. J.; Zhao, K. L. et al. Real-time in vivo quantitative monitoring of drug release by dual-mode magnetic resonance and upconverted luminescence imaging. Angew. Chem., Int. Ed.2014, 53, 4551–4555.

    CAS  Google Scholar 

  32. Liang, C.; Xu, L. G.; Song, G. S.; Liu, Z. Emerging nanomedicine approaches fighting tumor metastasis: Animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy. Chem. Soc. Rev.2016, 45, 6250–6269.

    CAS  Google Scholar 

  33. Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev.2014, 114, 10869–10939.

    CAS  Google Scholar 

  34. Zhong, D. N.; Zhao, J.; Li, Y. Y.; Qiao, Y.; Wei, Q. L.; He, J.; Xie, T. T.; Li, W. L.; Zhou, M. Laser-triggered aggregated cubic α-Fe2O3@Au nano-composites for magnetic resonance imaging and photothermal/enhanced radiation synergistic therapy. Biomaterials2019, 219, 119369.

    CAS  Google Scholar 

  35. Luo, D. D.; Carter, K. A.; Miranda, D.; Lovell, J. F. Chemophototherapy: An emerging treatment option for solid tumors. Adv. Sci.2017, 4, 1600106.

    Google Scholar 

  36. Zhao, Z. H.; Xu, K.; Fu, C.; Liu, H.; Lei, M.; Bao, J. F.; Fu, A. L.; Yu, Y.; Zhang, W. G. Interfacial engineered gadolinium oxide nanoparticles for magnetic resonance imaging guided microenvironment-mediated synergetic chemodynamic/photothermal therapy. Biomaterials2019, 119379.

    CAS  Google Scholar 

  37. Agarwal, A.; Mackey, M. A.; El-Sayed, M. A.; Bellamkonda, R. V. Remote triggered release of doxorubicin in tumors by synergistic application of thermosensitive liposomes and gold nanorods. ACS Nano2011, 5, 4919–4926.

    CAS  Google Scholar 

  38. Kong, G.; Braun, R. D.; Dewhirst, M. W. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res.2001, 61, 3027–3032.

    CAS  Google Scholar 

  39. Hauck, T. S.; Jennings, T. L.; Yatsenko, T.; Kumaradas, J. C.; Chan, W. C. W. Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv. Mater.2008, 20, 3832–3838.

    CAS  Google Scholar 

  40. Melamed, J. R.; Edelstein, R. S.; Day, E. S. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano2015, 9, 6–11.

    CAS  Google Scholar 

  41. Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev.2019, 48, 2053–2108.

    CAS  Google Scholar 

  42. Carrasco, E.; del Rosal, B.; Sanz-Rodríguez, F.; de la Fuente, Á. J.; Gonzalez, P. H.; Rocha, U.; Kumar, K. U.; Jacinto, C.; Solé, J. G.; Jaque, D. Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Adv. Funct. Mater.2015, 25, 615–626.

    CAS  Google Scholar 

  43. Karan, N. S.; Keller, A. M.; Sampat, S.; Roslyak, O.; Arefin, A.; Hanson, C. J.; Casson, J. L.; Desireddy, A.; Ghosh, Y.; Piryatinski, A. et al. Plasmonic giant quantum dots: Hybrid nanostructures for truly simultaneous optical imaging, photothermal effect and thermometry. Chem. Sci.2015, 6, 2224–2236.

    CAS  Google Scholar 

  44. Yang, Y.; Zhu, W. J.; Dong, Z. L.; Chao, Y.; Xu, L.; Chen, M.; Liu, Z. 1D coordination polymer nanofibers for low-temperature photothermal therapy. Adv. Mater.2017, 29, 1703588.

    Google Scholar 

  45. Zhang, K.; Meng, X. D.; Cao, Y.; Yang, Z.; Dong, H. F.; Zhang, Y. D.; Lu, H. T.; Shi, Z. J.; Zhang, X. J. Metal-organic framework nanoshuttle for synergistic photodynamic and low-temperature photothermal therapy. Adv. Funct. Mater.2018, 28, 1804634.

    Google Scholar 

  46. Malzahn, K.; Ebert, S.; Schlegel, I.; Neudert, O.; Wagner, M.; Schütz, G.; Ide, A.; Roohi, F.; Münnemann, K.; Crespy, D. et al. Design and control of nanoconfinement to achieve magnetic resonance contrast agents with high relaxivity. Adv. Healthc. Mater.2016, 5, 567–574.

    CAS  Google Scholar 

  47. Ananta, J. S.; Godin, B.; Sethi, R.; Moriggi, L.; Liu, X. W.; Serda, R. E.; Krishnamurthy, R.; Muthupillai, R.; Bolskar, R. D.; Helm, L. et al. Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 Contrast. Nat. Nanotechnol.2010, 5, 815–821.

    CAS  Google Scholar 

  48. Ding, X. G.; Liow, C. H.; Zhang, M. X.; Huang, R. J.; Li, C. Y.; Shen, H.; Liu, M. Y.; Zou, Y.; Gao, N.; Zhang, Z. J. et al. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc.2014, 136, 15684–15693.

    CAS  Google Scholar 

  49. Moon, G. D.; Choi, S. W.; Cai, X.; Li, W. Y.; Cho, E. C.; Jeong, U.; Wang, L. V.; Xia, Y. N. A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J. Am. Chem. Soc.2011, 133, 4762–4765.

    CAS  Google Scholar 

  50. Cui, J. B.; Jiang, R.; Guo, C.; Bai, X. L.; Xu, S. Y.; Wang, L. Y. Fluorine grafted Cu7S4-Au heterodimers for multimodal imaging guided photothermal therapy with high penetration depth. J. Am. Chem. Soc.2018, 140, 5890–5894.

    CAS  Google Scholar 

  51. Liu, X.; Lee, C.; Law, W. C.; Zhu, D. W.; Liu, M. X.; Jeon, M.; Kim, J.; Prasad, P. N.; Kim, C.; Swihart, M. T. Au-Cu2−xSe heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging. Nano Lett.2013, 13, 4333–4339.

    CAS  Google Scholar 

  52. Zhu, D. W.; Liu, M. X.; Liu, X.; Liu, Y.; Prasad, P. N.; Swihart, M. T. Au-Cu2−xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy. J. Mater. Chem. B2017, 5, 4934–4942.

    CAS  Google Scholar 

  53. Zou, Y.; Sun, C.; Gong, W. B.; Yang, X. F.; Huang, X.; Yang, T.; Lu, W. B.; Jiang, J. Morphology-controlled synthesis of hybrid nanocrystals via a selenium-mediated strategy with ligand shielding effect: The case of dual plasmonic Au-Cu2−xSe. ACS Nano2017, 11, 3776–3785.

    CAS  Google Scholar 

  54. Zhu, H.; Wang, Y.; Chen, C.; Ma, M. R.; Zeng, J. F.; Li, S. Z.; Xia, Y. S.; Gao, M. Y. Monodisperse dual plasmonic Au@Cu2−xE (E= S, Se) core@shell supraparticles: Aqueous fabrication, multimodal imaging, and tumor therapy at in vivo level. ACS Nano2017, 11, 8273–8281.

    CAS  Google Scholar 

  55. Ji, M. W.; Xu, M.; Zhang, W.; Yang, Z. Z.; Huang, L.; Liu, J. J.; Zhang, Y.; Gu, L.; Yu, Y. X.; Hao, W. C. et al. Structurally well-defined Au@Cu2−xS core-shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency. Adv. Mater.2016, 28, 3094–3101.

    CAS  Google Scholar 

  56. Chang, Y.; Cheng, Y.; Feng, Y. L.; Jian, H.; Wang, L.; Ma, X. M.; Li, X.; Zhang, H. Y. Resonance energy transfer-promoted photothermal and photodynamic performance of gold-copper sulfide yolk-shell nanoparticles for chemophototherapy of cancer. Nano Lett.2018, 18, 886–897.

    CAS  Google Scholar 

  57. Wang, X. D.; Guo, L. R.; Zhang, S. H.; Chen, Y.; Chen, Y. T.; Zheng, B. B.; Sun, J. W.; Qian, Y. Y.; Chen, Y. X.; Yan, B. F. et al. Copper sulfide facilitates hepatobiliary clearance of gold nanoparticles through the copper-transporting ATPase ATP7B. ACS Nano2019, 13, 5720–5730.

    CAS  Google Scholar 

  58. Liu, X. J.; Deng, G. Y.; Wang, Y. Y.; Wang, Q.; Gao, Z. F.; Sun, Y. G.; Zhang, W. L.; Lu, J.; Hu, J. Q. A novel and facile synthesis of porous SiO2-coated ultrasmall Se particles as a drug delivery nanoplatform for efficient synergistic treatment of cancer cells. Nanoscale2016, 8, 8536–8541.

    CAS  Google Scholar 

  59. Kim, T.; Momin, E.; Choi, J.; Yuan, K.; Zaidi, H.; Kim, J.; Park, M.; Lee, N.; McMahon, M. T.; Quinones-Hinojosa, A. et al. Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J. Am. Chem. Soc.2011, 133, 2955–2961.

    CAS  Google Scholar 

  60. Huang, C. C.; Tsai, C. Y.; Sheu, H. S.; Chuang, K. Y.; Su, C. H.; Jeng, U. S.; Cheng, F. Y.; Su, C. H.; Lei, H. Y.; Yeh, C. S. Enhancing transversal relaxation for magnetite nanoparticles in MR imaging using Gd3+-chelated mesoporous silica shells. ACS Nano2011, 5, 3905–3916.

    CAS  Google Scholar 

  61. Chen, Y.; Ding, X. G.; Zhang, Y.; Natalia, A.; Sun, X. C.; Wang, Z. G.; Shao, H. L. Design and synthesis of magnetic nanoparticles for biomedical diagnostics. Quant. Imaging Med. Surg.2018, 8, 957–970.

    Google Scholar 

  62. Gosselin, R. E.; Hodge, H. C.; Smith, R. P.; Gleason, M. N. Clinical Toxicology of Commercial Products: Acute Poisoning; 4th ed. Williams & Wilkins: Baltimore, 1976.

    Google Scholar 

  63. Alcohol C-14 myristic. Food Cosmet. Toxicol.1975, 13, 699–700.

    Google Scholar 

  64. Rizzo, W. B. Fatty aldehyde and fatty alcohol metabolism: Review and importance for epidermal structure and function. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids2014, 1841, 377–389.

    CAS  Google Scholar 

  65. Aznar, E.; Mondragón, L.; Ros-Lis, J. V.; Sancenón, F.; Marcos, M. D.; Martínez-Máñez, R.; Soto, J.; Pérez-Payá E.; Amorós, P. Finely tuned temperature-controlled cargo release using paraffin-capped mesoporous silica nanoparticles. Angew. Chem., Int. Ed.2011, 50, 11172–11175.

    CAS  Google Scholar 

  66. Oró, E.; De Gracia, A.; Castell, A.; Farid, M. M.; Cabeza, L. F. Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl. Energy2012, 99, 513–533.

    Google Scholar 

  67. Zalba, B.; Marín, J. M.; Cabeza, L. F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng.2003, 23, 251–283.

    CAS  Google Scholar 

  68. Zhang, X.; Du, J. F.; Guo, Z.; Yu, J.; Gao, Q.; Yin, W. Y.; Zhu, S.; Gu, Z. J.; Zhao, Y. L. Efficient near infrared light triggered nitric oxide release nano-composites for sensitizing mild photothermal therapy. Adv. Sci.2019, 6, 1801122.

    Google Scholar 

  69. Chen, Q.; Hu, Q. Y.; Dukhovlinova, E.; Chen, G. J.; Ahn, S.; Wang, C.; Ogunnaike, E. A.; Ligler, F. S.; Dotti, G.; Gu, Z. Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells. Adv. Mater.2019, 31, 1900192.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 21473243) and Six Talent Peaks Project in Jiangsu Province (No. SWYY-243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Jiang.

Electronic Supplementary Material

12274_2019_2540_MOESM1_ESM.pdf

All-in-one theranostic nanoplatform with controlled drug release and activated MRI tracking functions for synergistic NIR-II hyperthermia-chemotherapy of tumors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Zhao, H., Li, C. et al. All-in-one theranostic nanoplatform with controlled drug release and activated MRI tracking functions for synergistic NIR-II hyperthermia-chemotherapy of tumors. Nano Res. 12, 2971–2981 (2019). https://doi.org/10.1007/s12274-019-2540-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2540-3

Keywords

Navigation