Skip to main content
Log in

Rational design of phosphorus-doped cobalt sulfides electrocatalysts for hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Moderate anionic doping is an effective approach to improve the performance of electrocatalysts toward hydrogen evolution reaction (HER) since it can adjust the electronic structure, active site, and phase. The reported studies mainly focus on designing P doped CoS2, while other phases of cobalt sulfide, such as Co1−xS and Co9S8 doped with P are rarely investigated for HER electrocatalysts. Herein, various cobalt sulfides (including CoS2/Co1−xS, Co1−xS, and Co9S8) doped with P are anchored on carbon cloth through a facile hydrothermal method. Among tested electrocatalysts, P doped Co1−xS exhibits excellent electrocatalytic performance with an overpotential of 110 and 165 mV (vs. RHE) for current densities of 10 and 100 mA·cm−2, respectively. Density functional theory calculations reveal that P doped Co1−xS possesses a smaller bandgap and more optimal hydrogen adsorption sites than pristine Co1−xS. This work initially investigates various cobalt sulfides doped with P and further gets insight into the activity improvement mechanism of P doping, which could guide the design of earth-abundant HER electrocatalysts for the “hydrogen economy”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature2001, 414, 332–337.

    CAS  Google Scholar 

  2. Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science2015, 347, 970–974.

    Article  CAS  Google Scholar 

  3. Tian, J. Q.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem., Int. Ed.2014, 53, 9577–9581.

    Article  CAS  Google Scholar 

  4. Turner, J. A. Sustainable hydrogen production. Science2004, 305, 972–974.

    Article  CAS  Google Scholar 

  5. Nocera, D. G. The artificial leaf. Acc. Chem. Res.2012, 45, 767–776.

    Article  CAS  Google Scholar 

  6. Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science2011, 334, 1256–1260.

    Article  CAS  Google Scholar 

  7. Kibsgaard, J.; Tsai, C.; Chan, K. R.; Benck, J. D.; Nørskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci.2015, 8, 3022–3029.

    Article  CAS  Google Scholar 

  8. Wu, T. L.; Pi, M. Y.; Zhang, D. K.; Chen, S. J. 3D structured porous CoP3 nanoneedle arrays as an efficient bifunctional electrocatalyst for the evolution reaction of hydrogen and oxygen. J. Mater. Chem. A2016, 4, 14539–14544.

    Article  CAS  Google Scholar 

  9. Liao, L.; Wang, S. N.; Xiao, J. J.; Bian, X. J.; Zhang, Y. H.; Scanlon, M. D.; Hu, X. L.; Tang, Y.; Liu, B. H.; Girault, H. H. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci.2014, 7, 387–392.

    Article  CAS  Google Scholar 

  10. Wu, T. L.; Dang, Y. L.; He, J. K.; Li, T.; Qu, G. X.; Gao, Y. Y.; Tan, F. R. Synthesis and mechanism investigation of three-dimensional porous CoP3 nanoplate arrays as efficient hydrogen evolution reaction electrocatalyst. Appl. Surf. Sci.2019, 494, 179–186.

    Article  CAS  Google Scholar 

  11. Ye, R. Q.; del Angel-Vicente, P.; Liu, Y. Y.; Arellano-Jimenez, M. J.; Peng, Z. W.; Wang, T.; Li, Y. L.; Yakobson, B. I.; Wei, S. H.; Yacaman, M. J. et al. High-performance hydrogen evolution from MoS2(1−x)Px solid solution. Adv. Mater.2016, 28, 1427–1432.

    Article  CAS  Google Scholar 

  12. Wang, D. Y.; Gong, M.; Chou, H. L.; Pan, C. J.; Chen, H. A.; Wu, Y. P.; Lin, M. C.; Guan, M. Y.; Yang, J.; Chen, C. W. et al. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction. J. Am. Chem. Soc.2015, 137, 1587–1592.

    Article  CAS  Google Scholar 

  13. Cheng, L.; Huang, W. J.; Gong, Q. F.; Liu, C. H.; Liu, Z.; Li, Y. G.; Dai, H. J. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed.2014, 53, 7860–7863.

    Article  CAS  Google Scholar 

  14. Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc.2011, 133, 7296–7299.

    Article  CAS  Google Scholar 

  15. Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater.2013, 25, 5807–5813.

    Article  CAS  Google Scholar 

  16. Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc.2013, 135, 17881–17888.

    Article  CAS  Google Scholar 

  17. Yan, D. F.; Chen, R.; Xiao, Z. H.; Wang, S. Y. Engineering the electronic structure of Co3O4 by carbon-doping for efficient overall water splitting. Electrochim. Acta2019, 303, 316–322.

    Article  CAS  Google Scholar 

  18. Zhang, X. W.; Meng, F.; Mao, S.; Ding, Q.; Shearer, M. J.; Faber, M. S.; Chen, J. H.; Hamers, R. J.; Jin, S. Amorphous MoSxCly electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation. Energy Environ. Sci.2015, 8, 862–868.

    Article  CAS  Google Scholar 

  19. Wang, K.; Zhou, C. J.; Xi, D.; Shi, Z. Q.; He, C.; Xia, H. Y.; Liu, G. W.; Qiao, G. J. Component-controllable synthesis of Co(SxSe1−x)2 nanowires supported by carbon fiber paper as high-performance electrode for hydrogen evolution reaction. Nano Energy2015, 18, 1–11.

    Article  Google Scholar 

  20. Brumme, T.; Calandra, M.; Mauri, F. First-principles theory of field-effect doping in transition-metal dichalcogenides: Structural properties, electronic structure, hall coefficient, and electrical conductivity. Phys. Rev. B2015, 91, 155436.

    Article  Google Scholar 

  21. Liu, W.; Hu, E. Y.; Jiang, H.; Xiang, Y. J.; Weng, Z.; Li, M.; Fan, Q.; Yu, X. Q.; Altman, E. I.; Wang, H. L. A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nat. Commun.2016, 7, 10771.

    Article  CAS  Google Scholar 

  22. Zhang, J. Y.; Liu, Y. C.; Xia, B. R.; Sun, C. Q.; Liu, Y. G.; Liu, P. T.; Gao, D. Q. Facile one-step synthesis of phosphorus-doped CoS2 as efficient electrocatalyst for hydrogen evolution reaction. Electrochim. Acta2018, 259, 955–961.

    Article  CAS  Google Scholar 

  23. Caban-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater.2015, 14, 1245–1251.

    Article  CAS  Google Scholar 

  24. Ouyang, C. B.; Wang, X.; Wang, S. Y. Phosphorus-doped CoS2 nanosheet arrays as ultra-efficient electrocatalysts for the hydrogen evolution reaction. Chem. Commun.2015, 51, 14160–14163.

    Article  CAS  Google Scholar 

  25. Zhu, H.; Zhang, J. F.; Yanzhang, R. P.; Du, M. L.; Wang, Q. F.; Gao, G. H.; Wu, J. D.; Wu, G. M.; Zhang, M.; Liu, B. et al. When cubic cobalt sulfide meets layered molybdenum disulfide: A core-shell system toward synergetic electrocatalytic water splitting. Adv. Mater.2015, 27, 4752–4759.

    Article  CAS  Google Scholar 

  26. Zhang, R.; Wang, X. X.; Yu, S. J.; Wen, T.; Zhu, X. W.; Yang, F. X.; Sun, X. N.; Wang, X. K.; Hu, W. P. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater.2017, 29, 1605502.

    Article  Google Scholar 

  27. Wang, T. Y.; Du, K. Z.; Liu, W. L.; Zhu, Z. W.; Shao, Y. H.; Li, M. X. Enhanced electrocatalytic activity of MoP microparticles for hydrogen evolution by grinding and electrochemical activation. J. Mater. Chem. A2015, 3, 4368–4373.

    Article  CAS  Google Scholar 

  28. Li, J. Y.; Zhou, X. M.; Xia, Z. M.; Zhang, Z. Y.; Li, J.; Ma, Y. Y.; Qu, Y. Q. Facile synthesis of CoX (X = S, P) as an efficient electrocatalyst for hydrogen evolution reaction. J. Mater. Chem. A2015, 3, 13066–13071.

    Article  CAS  Google Scholar 

  29. Zhao, G. X.; Sun, Y. B.; Zhou, W.; Wang, X. K.; Chang, K.; Liu, G. G.; Liu, H. M.; Kako, T.; Ye, J. H. Superior photocatalytic H2 production with cocatalytic Co/Ni species anchored on sulfide semiconductor. Adv. Mater.2017, 29, 1703258.

    Article  Google Scholar 

  30. Lyu, Y. H.; Wang, R. L.; Tao, L.; Zou, Y. Q.; Zhou, H. J.; Liu, T. T.; Zhou, Y. Y.; Huo, J.; Jiang, S. P.; Zheng, J. Y. et al. In-situ evolution of active layers on commercial stainless steel for stable water splitting. Appl. Catal. B: Environ.2019, 248, 277–285.

    Article  CAS  Google Scholar 

  31. Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem.2015, 127, 7507–7512.

    Article  Google Scholar 

  32. Jiang, J.; Gao, M. R.; Sheng, W. C.; Yan, Y. S. Hollow chevrel-phase NiMo3S4 for hydrogen evolution in alkaline electrolytes. Angew. Chem.2016, 55, 15240–15245.

    Article  CAS  Google Scholar 

  33. Greeley, J.; Nørskov, J. K. Large-scale, density functional theory-based screening of alloys for hydrogen evolution. Surf. Sci.2007, 601, 1590–1598.

    Article  CAS  Google Scholar 

  34. Govindasamy, G.; Murugasen, P.; Sagadevan, S. Optical and electrical properties of chemical bath deposited cobalt sulphide thin films. Mater. Res.2017, 20, 62–67.

    Article  CAS  Google Scholar 

  35. Wang, Y. Q.; Zou, Y. Q.; Tao, L.; Wang, Y. Y.; Huang, G.; Du, S. Q.; Wang, S. Y. Rational design of three-phase interfaces for electrocatalysis. Nano Res.2019, 12, 2055–2066.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21701153) and National Postdoctoral Program for Innovative Talents (No. BX201700042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Yue.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, G., Wu, T., Yu, Y. et al. Rational design of phosphorus-doped cobalt sulfides electrocatalysts for hydrogen evolution. Nano Res. 12, 2960–2965 (2019). https://doi.org/10.1007/s12274-019-2538-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2538-x

Keywords

Navigation