Skip to main content
Log in

Surface depletion field in 2D perovskite microplates: Structural phase transition, quantum confinement and Stark effect

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Surface depletion field would introduce the depletion region near surface and thus could significantly alter the optical, electronic and optoelectronic properties of the materials, especially low-dimensional materials. Two-dimensional (2D) organic—inorganic hybrid perovskites with van der Waals bonds in the out-of-plane direction are expected to have less influence from the surface depletion field; nevertheless, studies on this remain elusive. Here we report on how the surface depletion field affects the structural phase transition, quantum confinement and Stark effect in 2D (BA)2PbI4 perovskite microplates by the thickness-, temperature- and power-dependent photoluminescence (PL) spectroscopy. Power dependent PL studies suggest that high-temperature phase (HTP) and low-temperature phase (LTP) can coexist in a wider temperature range depending on the thickness of the 2D perovskite microplates. With the decrease of the microplate thickness, the structural phase transition temperature first gradually decreases and then increases below 25 nm, in striking contrast to the conventional size dependent structural phase transition. Based on the thickness evolution of the emission peaks for both high-temperature phase and low-temperature phase, the anomalous size dependent phase transition could probably be ascribed to the surface depletion field and the surface energy difference between polymorphs. This explanation was further supported by the temperature dependent PL studies of the suspended microplates and encapsulated microplates with graphene and boron nitride flakes. Along with the thickness dependent phase transition, the emission energies of free excitons for both HTP and LTP with thickness can be ascribed to the surface depletion induced confinement and Stark effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leng, K.; Abdelwahab, I.; Verzhbitskiy, I.; Telychko, M.; Chu, L. Q.; Fu, W.; Chi, X.; Guo, N.; Chen, Z. H.; Chen, Z. X. et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater. 2018, 17, 908–914.

    CAS  Google Scholar 

  2. Gerosa, M.; Gygi, F.; Govoni, M.; Galli, G. The role of defects and excess surface charges at finite temperature for optimizing oxide photoabsorbers. Nat. Mater.2018, 17, 1122–1127.

    CAS  Google Scholar 

  3. Long, G. K.; Zhou, Y. C.; Zhang, M. T.; Sabatini, R.; Rasmita, A.; Huang, L.; Lakhwani, G.; Gao, W. B. Theoretical prediction of chiral 3D hybrid organic—inorganic perovskites. Adv. Mater.2019, 31, 1807628.

    Google Scholar 

  4. Chen, Y. N.; Sun, Y.; Peng, J. J.; Tang, J. H.; Zheng, K. B.; Liang, Z. Q. 2D Ruddlesden-Popper perovskites for optoelectronics. Adv. Mater. 2018, 30, 1703487.

    Google Scholar 

  5. Qi, X.; Zhang, Y. P.; Ou, Q. D.; Ha, S. T.; Qiu, C. W.; Zhang, H.; Cheng, Y. B.; Xiong, Q. H.; Bao, Q. L. Photonics and optoelectronics of 2D metal-halide perovskites. Small2018, 14, 1800682.

    Google Scholar 

  6. Li, D. H.; Wang, G. M.; Cheng, H. C.; Chen, C. Y.; Wu, H.; Liu, Y.; Huang, Y.; Duan, X. F. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. Nat. Commun. 2016, 7, 11330.

    CAS  Google Scholar 

  7. Xi, X. X.; Wang, Z. F.; Zhao, W. W.; Park, J. H.; Law, K. T.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys.2016, 12, 139–143.

    CAS  Google Scholar 

  8. Xi, X. X.; Zhao, L.; Wang, Z. F.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 2015, 10, 765–769.

    CAS  Google Scholar 

  9. Yu, Y. J.; Yang, F. Y.; Lu, X. F.; Yan, Y. J.; Cho, Y. H.; Ma, L. G.; Niu, X. H.; Kim, S.; Son, Y. W.; Feng, D. L. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 2015, 10, 270–276.

    CAS  Google Scholar 

  10. Wang, Z. Y.; Sun, Y. Y.; Abdelwahab, I.; Cao, L.; Yu, W.; Ju, H. X.; Zhu, J. F.; Fu, W.; Chu, L. Q.; Xu, H. et al. Surface-limited superconducting phase transition on 1T-TaS2. ACS Nano2018, 18, 1936–0851.

    Google Scholar 

  11. Chen, L.; Liu, J.; Jiang, C.; Zhao, K. P.; Chen, H. Y.; Shi, X.; Chen, L. D.; Sun, C. H.; Zhang, S. B.; Wang, Y. et al. Nanoscale behavior and manipulation of the phase transition in single-crystal Cu2Se. Adv. Mater. 2019, 31, 1804919.

    Google Scholar 

  12. Kang, Y. M.; Najmaei, S.; Liu, Z.; Bao, Y. J.; Wang, Y. M.; Zhu, X.; Halas, N. J.; Nordlander, P.; Ajayan, P. M.; Lou, J. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 2014, 26, 6467–6471.

    CAS  Google Scholar 

  13. Bai, S.; Wu, Z. W.; Wu, X. J.; Jin, Y. Z.; Zhao, N.; Chen, Z. H.; Mei, Q. Q.; Wang, X.; Ye, Z. Z.; Song, T. et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res.2014, 7, 1749–1758.

    CAS  Google Scholar 

  14. Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T. W.; Stranks, S. D.; Snaith, H. J.; Nicholas, R. J. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat. Phys.2015, 11, 582–587.

    CAS  Google Scholar 

  15. Li, L.; Li, J. Z.; Lan, S. G.; Lin, G. M.; Wang, J.; Wang, H. Z.; Xuan, Y. N.; Luo, H. M.; Li, D. H. Two-step growth of 2D organic-inorganic perovskite microplates and arrays for functional optoelectronics. J. Phys. Chem. Lett.2018, 9, 4532–4538.

    CAS  Google Scholar 

  16. Stoumpos, C. C.; Cao, D. H.; Clark, D. J.; Young, J.; Rondinelli, J. M.; Jang, J. I.; Hupp, J. T.; Kanatzidis, M. G. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater.2016, 28, 2852–2867.

    CAS  Google Scholar 

  17. Wang, J.; Li, J. Z.; Tan, Q. H.; Li, L.; Zhang, J. B.; Zang, J. F.; Tan, P. H.; Zhang, J.; Li, D. H. Controllable synthesis of two-dimensional ruddlesden-popper-type perovskite heterostructures. J. Phys. Chem. Lett.2017, 8, 6211–6219.

    CAS  Google Scholar 

  18. Yan, F.; Xing, J.; Xing, G. C.; Quan, L.; Tan, S. T.; Zhao, J. X.; Su, R.; Zhang, L. L.; Chen, S.; Zhao, Y. W. et al. Highly efficient visible colloidal lead-halide perovskite nanocrystal light-emitting diodes. Nano Lett.2018, 18, 3157–3164.

    CAS  Google Scholar 

  19. Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater.2016, 26, 2435–2445.

    CAS  Google Scholar 

  20. Lin, K. B.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q,; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature2018, 562, 245–248.

    CAS  Google Scholar 

  21. Wang, J.; Su, R.; Xing, J.; Bao, D.; Diederichs, C.; Liu, S.; Liew, T. C. H.; Chen, Z. H.; Xiong, Q. H. Room temperature coherently coupled exciton—polaritons in two-dimensional organic—inorganic perovskite. ACS nano2018, 12, 8382–8389.

    CAS  Google Scholar 

  22. Fang, Y. J.; Dong, Q. F.; Shao, Y. H.; Yuan, Y. B.; Huang, J. S. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics2015, 9, 679–686.

    CAS  Google Scholar 

  23. Di, J.; Xiong, J.; Li, H. M.; Liu, Z. Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications. Adv. Mater.2018, 30, 1704548.

    Google Scholar 

  24. Zhu, C.; Chen, Y.; Liu, F. C.; Zheng, S. J.; Li, X. B.; Chaturvedi, A.; Zhou, J. D.; Fu, Q. D.; He, Y. M.; Zeng, Q. S. et al. Light-tunable 1T-TaS2 charge-density-wave oscillators. ACS Nano2018, 12, 11203–11210.

    CAS  Google Scholar 

  25. Long, G. K.; Jiang, C. Y.; Sabatini, R.; Yang, Z. Y.; Wei, M. Y.; Quan, L. N.; Liang, Q. M.; Rasmita, A.; Askerka, M.; Walters, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photonics2018, 12, 528–533.

    CAS  Google Scholar 

  26. Li, D. H.; Zhang, J.; Xiong, Q. H. Surface depletion induced quantum confinement in CdS nanobelts. ACS Nano2012, 6, 5283–5290.

    CAS  Google Scholar 

  27. Billing, D. G.; Lemmerer, A. Synthesis, characterization and phase transitions in the inorganic-organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n = 4, 5 and 6. Acta Crystallogr., Sect. B: Struct. Sci.2007, 63, 735–747.

    CAS  Google Scholar 

  28. Lai, M. L.; Kong, Q.; Bischak, C. G.; Yu, Y.; Dou, L.; Eaton, S. W.; Ginsberg, N. S.; Yang, P. D. Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res.2017, 10, 1107–1114.

    CAS  Google Scholar 

  29. Li, J. Z.; Wang, J.; Zhang, Y. J.; Wang, H. Z.; Lin, G. M.; Xiong, X.; Zhou, W. H; Luo, H. M.; Li, D. H. Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation. 2D Mater.2018, 5, 021001.

    Google Scholar 

  30. Yaffe, O.; Chernikov, A.; Norman, Z. M.; Zhong, Y.; Velauthapillai, A.; van der Zande, A.; Owen, J. S.; Heinz, T. F. Excitons in ultrathin organic-inorganic perovskite crystals. Phys. Rev. B2015, 414.

  31. Wu, X. X.; Trinh, M. T.; Niesner, D.; Zhu, H. M.; Norman, Z.; Owen, J. S.; Yaffe, O.; Kudisch, B. J.; Zhu, X. Y. Trap states in lead iodide perovskites. J. Am. Chem. Soc.2015, 137, 2089–2096.

    CAS  Google Scholar 

  32. Thirumal, K.; Chong, W. K.; Xie, W.; Ganguly, R.; Muduli, S. K.; Sherburne, M.; Asta, M.; Mhaisalkar, S.; Sum, T. C.; Soo, H. S. et al. Morphology-independent stable white-light emission from self-assembled two-dimensional perovskites driven by strong exciton—phonon coupling to the organic framework. Chem. Mater.2017, 29, 3947–3953.

    CAS  Google Scholar 

  33. Li, J. Z.; Wang, J.; Ma, J. Q.; Shen, H. Z.; Li, L.; Duan, X. F.; Li, D. H. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nat. Commun.2019, 10, 806.

    CAS  Google Scholar 

  34. Li, D. H.; Zhang, J.; Zhang, Q.; Xiong, Q. H. Electric-field-dependent photoconductivity in CdS nanowires and nanobelts: Exciton ionization, Franz–Keldysh, and Stark effects. Nano Lett.2012, 12, 2993–2999.

    CAS  Google Scholar 

  35. Gauthron, K.; Lauret, J. S.; Doyennette, L.; Lanty, G.; Al Choueiry, A.; Zhang, S. J.; Brehier, A.; Largeau, L.; Mauguin, O.; Bloch, J. et al. Optical spectroscopy of two-dimensional layered (C6H5C2H4-NH3)2-PbI4 perovskite. Opt. Express2010, 18, 5912–5919.

    CAS  Google Scholar 

  36. Chen, Z. Z.; Wang, Y. P.; Sun, X.; Xiang, Y.; Hu, Y.; Jiang, J.; Feng, J.; Sun, Y. Y.; Wang, X.; Wang, G. C. et al. Remote phononic effects in epitaxial Ruddlesden-Popper halide perovskites. J. Phys. Chem. Lett.2018, 9, 6676–6682.

    CAS  Google Scholar 

  37. Gan, L.; Li, J.; Fang, Z. S.; He, H. P.; Ye, Z. Z. Effects of organic cation length on exciton recombination in two-dimensional layered lead iodide hybrid perovskite crystals. J. Phys. Chem. Lett.2017, 8, 5177–5183.

    Google Scholar 

  38. Blancon, J. C.; Stier, A. V.; Tsai, H.; Nie, W.; Stoumpos, C. C.; Traoré, B.; Pedesseau, L.; Kepenekian, M.; Katsutani, F.; Noe, G. T. et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun.2018, 9, 2254.

    Google Scholar 

  39. Ni, L. M.; Huynh, U.; Cheminal, A.; Thomas, T. H.; Shivanna, R.; Hinrichsen, T. F.; Ahmad, S.; Sadhanala, A.; Rao, A. Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells. ACS Nano2017, 11, 10834–10843.

    CAS  Google Scholar 

  40. Zhang, Q.; Chu, L. Q.; Zhou, F.; Ji, W.; Eda, G. Excitonic properties of chemically synthesized 2D organic-inorganic hybrid perovskite nanosheets. Adv. Mater.2018, 30, 1704055.

    Google Scholar 

  41. Manser, J. S.; Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics2014, 8, 737–743.

    CAS  Google Scholar 

  42. Li, D. H.; Liu, Y.; de la Mata, M.; Magen, C.; Arbiol, J.; Feng, Y. P.; Xiong, Q. H. Strain-induced spatially indirect exciton recombination in zinc-blende/wurtzite CdS heterostructures. Nano Res.2015, 8, 3035–3044.

    CAS  Google Scholar 

  43. Walters, G.; Wei, M.; Voznyy, O.; Quintero-Bermudez, R.; Kiani, A.; Smilgies, D. M.; Munir, R.; Amassian, A.; Hoogland, S.; Sargent, E. The quantum-confined Stark effect in layered hybrid perovskites mediated by orientational polarizability of confined dipoles. Nat. Commun.2018, 9, 4214.

    CAS  Google Scholar 

  44. Zhao, F. H.; Gao, X.; Fang, X.; Glinka, Y. D.; Feng, X. Y.; He, Z. B.; Wei, Z. P.; Chen, R. Interfacial-field-induced increase of the structural phase transition temperature in organic-inorganic perovskite crystals coated with ZnO nanoshell. Adv. Mater. Interfaces2018, 5, 1800301.

    Google Scholar 

  45. Roch, J. G.; Leisgang, N.; Froehlicher, G.; Makk, P.; Watanabe, K.; Taniguchi, T.; Schönenberger, C.; Warburton, R. J. Quantum-confined stark effect in a MoS2 monolayer van der waals heterostructure. Nano Lett.2018, 18, 1070–1074.

    CAS  Google Scholar 

  46. Sichert, J. A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.; Milowska, K. Z.; Garcia Cortadella, R.; Nickel, B.; Cardenas-Daw, C.; Stolarczyk, J. K. et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett.2015, 15, 6521–6527.

    CAS  Google Scholar 

  47. Hapuarachchi, H.; Gunapala, S. D.; Bao, Q. L.; Stockman, M. I.; Premaratne, M. Exciton behavior under the influence of metal nanoparticle near fields: Significance of nonlocal effects. Phys. Rev. B2018, 98, 115430.

    CAS  Google Scholar 

  48. Tu, Q.; Spanopoulos, I.; Hao, S. Q.; Wolverton, C.; Kanatzidis, M. G.; Shekhawat, G. S.; Dravid, V. P. Probing strain-induced band gap modulation in 2D hybrid organic—inorganic perovskites. ACS Energy Lett.2019, 4, 796–802.

    CAS  Google Scholar 

  49. Kepenekian, M.; Traore, B.; Blancon, J. C.; Pedesseau, L.; Tsai, H.; Nie, W.; Stoumpos, C. C.; Kanatzidis, M. G.; Even, J.; Mohite, A. D. et al. Concept of lattice mismatch and emergence of surface states in two-dimensional hybrid perovskite quantum wells. Nano Lett.2018, 18, 5603–5609.

    CAS  Google Scholar 

  50. Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal—semiconductor junctions. Nature2018, 557, 696–700.

    CAS  Google Scholar 

  51. Zhang, K. Q.; Liu, X. Y. In situ observation of colloidal monolayer nucleation driven by an alternating electric field. Nature2004, 429, 739–743.

    CAS  Google Scholar 

  52. Jin, F.; Ji, J. T.; Xie, C.; Wang, Y. M.; He, S. N.; Zhang, L.; Yang, Z. R.; Yan, F.; Zhang, Q. M. Characterization of structural transitions and lattice dynamics of hybrid organic—inorganic perovskite CH3NH3PbI3. Chin. Phys. B.2019, 28, 076102.

    Google Scholar 

  53. Zeches, R. J.; Rossell, M. D.; Zhang, J. X.; Hatt, A. J.; He, Q.; Yang, C. H.; Kumar, A.; Wang, C. H.; Melville, A.; Adamo, C. et al. A strain-driven morphotropic phase boundary in BiFeO3. Science2009, 326, 977–980.

    CAS  Google Scholar 

  54. Wehrenfennig, C.; Liu, M. Z.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films. APL Mater. 2014, 2, 081513.

    Google Scholar 

  55. Hatt, A. J.; Spaldin, N. A.; Ederer, C. Strain-induced isosymmetric phase transition in BiFeO3. Phys. Rev. B2010, 81, 054109.

    Google Scholar 

  56. You, Y. M.; Liao, W. Q.; Zhao, D. W.; Ye, H. Y.; Zhang, Y.; Zhou, Q. H.; Niu, X. H.; Wang, J. L.; Li, P. F.; Fu, D. W. et al. An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science2017, 357, 306–309.

    CAS  Google Scholar 

Download references

Acknowledgements

D. H. L. acknowledges support from the National Natural Science Foundation of China (No. 61674060), Innovation Fund of WNLO and the Fundamental Research Funds for the Central Universities, HUST (Nos. 2017KFYXJJ030, 2017KFXKJC003, 2017KFXKJC002, and 2018KFYXKJC016); H. M. L. is grateful for support from New Mexico EPSCoR with NSF-1301346. We thank Testing Center of Huazhong University of Science and Technology for the support in inductively coupled plasma etching.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongmei Luo or Dehui Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Fang, C., Wang, H. et al. Surface depletion field in 2D perovskite microplates: Structural phase transition, quantum confinement and Stark effect. Nano Res. 12, 2858–2865 (2019). https://doi.org/10.1007/s12274-019-2524-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2524-3

Keywords

Navigation