Skip to main content
Log in

External-force-driven solution epitaxy of large-area 2D organic single crystals for high-performance field-effect transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Growth of two-dimensional (2D) organic single crystals (2DOSCs) on water surface has attracted increasing attention, because it can serve as a molecularly flat and defect-free substrate. However, large-area growth of 2DOSCs with controllable crystal orientation on water surface remains a key challenge. Herein, we develop a simple method, i.e. external-force-driven solution epitaxy (EFDSE), for the large-area growth of 2DOSCs at air/water interface. Using 2,7-didecylbenzothienobenzothiophene (C10-BTBT) as an example, high-quality 2D C10-BTBT crystals on centimeter scale are generated by directionally controlling the spreading of organic solution on water surface with external force. Benefiting from the controllable crystal orientation with optimal charge transport, the corresponding 2DOSC-based organic field-effect transistors (OFETs) exhibit a high carrier mobility of 13.5 cm2·V-1·s-1 (effective mobility ≈ 5.4 cm2·V-1·s-1 according to a reliability factor of 40%), which represents the best result achieved for water-surface-assembled 2DOSC-based OFETs. Furthermore, by transferring the C10-BTBT 2DOSCs to flexible substrates, devices with excellent bending stability are achieved. It is anticipated that our method will provide new insight into the controllable growth of large-area 2DOSCs for high-performance organic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun.2013, 4, 2642.

    Article  Google Scholar 

  2. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on twodimensional materials. Nat. Nanotech.2014, 9, 768–779.

    Article  CAS  Google Scholar 

  3. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer grapheme. Science2008, 321, 385–388.

    Article  CAS  Google Scholar 

  4. Deng, W.; Zhang, X. J.; Wang, L.; Wang, J. C.; Shang, Q. X.; Zhang, X. H.; Huang, L. M.; Jie, J. S. Wafer-scale precise patterning of organic singlecrystal nanowire arrays via a photolithography-assisted spin-coating method. Adv. Mater.2015, 27, 7305–7312.

    Article  CAS  Google Scholar 

  5. Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Progr. Mater. Sci.2015, 73, 44–126.

    Article  CAS  Google Scholar 

  6. Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon.2014, 8, 899–907.

    Article  CAS  Google Scholar 

  7. Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotech.2014, 9, 780–793.

    Article  CAS  Google Scholar 

  8. Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science2016, 354, 99–102.

    Article  CAS  Google Scholar 

  9. Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater.2017, 16, 170–181.

    Article  CAS  Google Scholar 

  10. Park, S. K.; Kim, J. H.; Park, S. Y. Organic 2D optoelectronic crystals: Charge transport, emerging functions, and their design perspective. Adv. Mater.2018, 30, 1704759.

    Article  Google Scholar 

  11. Jiang, L.; Dong, H. L.; Meng, Q.; Li, H. X.; He, M.; Wei, Z. M.; He, Y. D.; Hu, W. P. Millimeter-sized molecular monolayer two-dimensional crystals. Adv. Mater.2011, 23, 2059–2063.

    Article  CAS  Google Scholar 

  12. Wang, Q. Q.; Yang, F. X.; Zhang, Y.; Chen, M. X.; Zhang, X. T.; Lei, S. B.; Li, R. J.; Hu, W. P. Space-confined strategy toward large-area two-dimensional single crystals of molecular materials. J. Am. Chem. Soc.2018, 140, 5339–5342.

    Article  CAS  Google Scholar 

  13. Wang, Q. J.; Qian, J.; Li, Y.; Zhang, Y. H.; He, D. W.; Jiang, S.; Wang, Y.; Wang, X. R.; Pan, L. J.; Wang, J. Z. et al. 2D single-crystalline molecular semiconductors with precise layer definition achieved by floating-coffee-ring-driven assembly. Adv. Funct. Mater.2016, 26, 3191–3198.

    Article  CAS  Google Scholar 

  14. Kim, J. H.; Park, S. K.; Kim, J. H.; Whang, D. R.; Yoon, W. S.; Park, S. Y. Self-assembled organic single crystalline nanosheet for solution processed high-performance n-channel field-effect transistors. Adv. Mater.2016, 28, 6011–6015.

    Article  CAS  Google Scholar 

  15. He, D. W.; Zhang, Y. H.; Wu, Q. S.; Xu, R.; Nan, H. Y.; Liu, J. F.; Yao, J. J.; Wang, Z. L.; Yuan, S. J.; Li, Y. et al. Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. Nat. Commun.2014, 5, 5162.

    Article  CAS  Google Scholar 

  16. Xu, C. H.; He, P.; Liu, J.; Cui, A. J.; Dong, H. L.; Zhen, Y. G.; Chen, W.; Hu, W. P. A general method for growing two-dimensional crystals of organic semiconductors by “solution epitaxy”. Angew. Chem., Int. Ed.2016, 55, 9519–9523.

    Article  CAS  Google Scholar 

  17. He, D. W.; Qiao, J. S.; Zhang, L. L.; Wang, J. Y.; Lan, T.; Qian, J.; Li, Y.; Shi, Y.; Chai, Y.; Lan, W. et al. Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride. Sci. Adv.2017, 3, e1701186.

    Article  Google Scholar 

  18. Yamamura, A.; Watanabe, S.; Uno, M.; Mitani, M.; Mitsui, C.; Tsurumi, J.; Isahaya, N.; Kanaoka, Y.; Okamoto, T.; Takeya, J. Wafer-scale, layer-controlled organic single crystals for high-speed circuit operation. Sci. Adv.2018, 4, eaao5758.

    Article  Google Scholar 

  19. Arai, S.; Inoue, S.; Hamai, T.; Kumai, R.; Hasegawa, T. Semiconductive single molecular bilayers realized using geometrical frustration. Adv. Mater.2018, 30, 1707256.

    Article  Google Scholar 

  20. Zhang, Y. H.; Qiao, J. S.; Gao, S.; Hu, F. R.; He, D. W.; Wu, B.; Yang, Z. Y.; Xu, B. C.; Li, Y.; Shi, Y. et al. Probing carrier transport and structure-property relationship of highly ordered organic semiconductors at the two-dimensional limit. Phys. Rev. Lett.2016, 116, 016602.

    Article  Google Scholar 

  21. Shi, Y. J.; Jiang, L.; Liu, J.; Tu, Z. Y.; Hu, Y. Y.; Wu, Q. H.; Yi, Y. P.; Gann, E.; McNeill, C. R.; Li, H. X. et al. Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications. Nat. Commun.2018, 9, 2933.

    Article  Google Scholar 

  22. Liu, D. H.; Chen, X. S.; Hu, Y. B.; Sun, T.; Song, Z. B.; Zheng, Y. J.; Cao, Y. B.; Cai, Z.; Cao, M.; Peng, L. et al. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nat. Commun.2018, 9, 193.

    Article  Google Scholar 

  23. Schweicher, G.; Lemaur, V.; Niebel, C.; Ruzié, C.; Diao, Y.; Goto, O.; Lee, W. Y.; Kim, Y.; Arlin, J. B.; Karpinska, J. et al. Bulky end-capped [1]benzothieno[3,2-b]benzothiophenes: Reaching high-mobility organic semiconductors by fine tuning of the crystalline solid-state order. Adv. Mater.2015, 27, 3066–3072.

    Article  CAS  Google Scholar 

  24. Izawa, T.; Miyazaki, E.; Takimiya, K. Molecular ordering of highperformance soluble molecular semiconductors and re-evaluation of their field-effect transistor characteristics. Adv. Mater.2008, 20, 3388–3392.

    Article  CAS  Google Scholar 

  25. Xu, Y.; Sun, H. B.; Liu, A.; Zhu, H. H.; Li, B. H.; Minari, T.; Balestra, F.; Ghibaudo, G.; Noh, Y. Y. Essential effects on the mobility extraction reliability for organic transistors. Adv. Funct. Mater.2018, 28, 1803907.

    Article  Google Scholar 

  26. Choi, H. H.; Cho, K.; Frisbie, C. D.; Sirringhaus, H.; Podzorov V. Critical assessment of charge mobility extraction in FETs. Nat. Mater.2017, 17, 2–7.

    Article  Google Scholar 

  27. Deng, W.; Zhang, X. J.; Wang, J. C.; Shang, Q. X.; Gong, C.; Zhang, X. H.; Zhang, Q.; Jie, J. S. Very facile fabrication of aligned organic nanowires based high-performance top-gate transistors on flexible, transparent substrate. Org. Electron.2014, 15, 1317–1323.

    Article  CAS  Google Scholar 

  28. Deng, W.; Zhang, X. J.; Dong, H. L.; Jie, J. S.; Xu, X. Z.; Liu, J.; He, L.; Xu, L.; Hu, W. P.; Zhang, X. H. Channel-restricted meniscus self-assembly for uniformly aligned growth of single-crystal arrays of organic semiconductors. Mater. Today2019, 24, 17–25.

    Article  CAS  Google Scholar 

  29. Briseno, A. L.; Mannsfeld, S. C. B.; Ling, M. M.; Liu, S. H.; Tseng, R. J.; Reese, C.; Roberts, M. E.; Yang, Y.; Wudl, F.; Bao, Z. N. Patterning organic single-crystal transistor arrays. Nature2006, 444, 913–917.

    Article  CAS  Google Scholar 

  30. Deng, W.; Zhang, X. J.; Pan, H. H.; Shang, Q. X.; Wang, J. C.; Zhang, X. H.; Zhang, X. W.; Jie, J. S. A high-yield two-step transfer printing method for large-scale fabrication of organic single-crystal devices on arbitrary substrates. Sci. Rep.2014, 4, 5358.

    Article  CAS  Google Scholar 

  31. Minari, T.; Kano, M.; Miyadera, T.; Wang, S. D.; Aoyagi, Y.; Tsukagoshi, K. Surface selective deposition of molecular semiconductors for solutionbased integration of organic field-effect transistors. Appl. Phys. Lett.2009, 94, 093307.

    Article  Google Scholar 

  32. Kan, X. N.; Xiao, C. Y.; Li, X. M.; Su, B.; Wu, Y. C.; Jiang, W.; Wang, Z. H.; Jiang, L. A dewetting-induced assembly strategy for precisely patterning organic single crystals in OFETs. ACS Appl. Mater. Interface2016, 8, 18978–18984.

    Article  CAS  Google Scholar 

  33. Park, K. S.; Cho, B.; Baek, J.; Hwang, J. K.; Lee, H.; Sung, M. Single-crystal organic nanowire electronics by direct printing from molecular solutions. Adv. Funct. Mater.2013, 23, 4776–4784.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51672180, 51622306, and 21673151), Natural Science Foundation of Jiangsu Province of China (No. BK20180845), Qing Lan Project, 111 project, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The authors thank the Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University and Beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing beam time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiansheng Jie or Xiaohong Zhang.

Electronic supplementary material

Supplementary material, approximately 228 KB.

12274_2019_2515_MOESM2_ESM.pdf

External-force-driven solution epitaxy of large-area 2D organic single crystals for high-performance field-effect transistors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Deng, W., Wang, W. et al. External-force-driven solution epitaxy of large-area 2D organic single crystals for high-performance field-effect transistors. Nano Res. 12, 2796–2801 (2019). https://doi.org/10.1007/s12274-019-2515-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2515-4

Keywords

Navigation