Skip to main content
Log in

Large-scale highly ordered periodic Au nano-discs/graphene and graphene/Au nanoholes plasmonic substrates for surface-enhanced Raman scattering

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this paper, the study of using masks to directly generate large area, highly ordered and periodical nanostructure has been exhibited. Periodic Au nano-discs(NDs) arrays have been fabricated on top of graphene by using holey Si3N4 mask which is directly fixed on top of graphene and Au metal is deposited through the holes in mask by thermal evaporation method under vacuum condition. This fabrication method provides an easy, fast and cost efficiency way to generate periodical nanostructure. Also, Au nanoholes(NHs) structure has been studied by using holey Si3N4 as a template. The surface-enhanced Raman scattering (SERS) sensitivities of periodical Au NDs/graphene and graphene/Au NHs hybrid structures have been systematically studied. The internal mechanisms could be explained by chemical mechanism effect of graphene and electromagnetic mechanism effect of metallic nano-structures. The enhancement factors have been systematically investigated by varying the diameter and the thickness of Au discs and Au NHs. Raman mappings of Au NDs with 2.5 μm diameter illustrate that the larger SERS enhancements exist in the rim of NDs which has good agreement with the electric field simulation result. The SERE enhancement factors of fluorescein obtained from Au NDs/graphene substrates shows an improvement factor of 500% in comparison of graphene substrate. The calculated SERS enhancement factors of graphene/Au NHs achieve 1,200% in comparison of graphene/planar Au film substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, L.; Shao, M. W.; Cheng, L.; Zhuo, S. J.; Que, R. H.; Lee, S. T. Edge-enhanced Raman scattering effect from Au deposited nanoedge array. Appl. Phys. Lett.2011, 98, 073114.

    Article  Google Scholar 

  2. Schedin, F.; Lidorikis, E.; Lombardo, A.; Kravets, V. G.; Geim, A. K.; Grigorenko, A. N.; Novoselov, K. S.; Ferrari, A. C. Surface-enhanced Raman spectroscopy of graphene. ACS Nano2010, 4, 5617–5626.

    Article  CAS  Google Scholar 

  3. Xu, W. G.; Ling, X.; Xiao, J. Q.; Dresselhaus, M. S.; Kong, J.; Xu, H. X.; Liu, Z. F.; Zhang, J. Surface enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl. Acad. Sci. USA2012, 109, 9281–9286.

    Article  CAS  Google Scholar 

  4. Reokrungruang, P.; Chatnuntawech, I.; Dharakul, T.; Bamrungsap, S. A simple paper-based surface enhanced Raman scattering (SERS) platform and magnetic separation for cancer screening. Sens. Actuators B: Chem.2019, 285, 462–469.

    Article  CAS  Google Scholar 

  5. Bamrungsap, S.; Treerattrakul, K. Development of SERS based biosensor for cancer screening. Asian J. Med. Biomed.2018, 28.

    Google Scholar 

  6. Mosier-Boss, P. A. Review of SERS substrates for chemical sensing. Nanomaterials2017, 7, 142.

    Article  Google Scholar 

  7. Xu, S. C.; Jiang, S. Z.; Wang, J. H.; Wei, J.; Yue, W. W.; Ma, Y. Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering. Sens. Actuators B: Chem.2016, 222, 1175–1183.

    Article  CAS  Google Scholar 

  8. Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science1997, 275, 1102–1106.

    Article  CAS  Google Scholar 

  9. Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc.2006, 128, 2115–2120.

    Article  CAS  Google Scholar 

  10. Ling, X.; Xie, L. M.; Fang, Y.; Xu, H.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. F. Can graphene be used as a substrate for Raman enhancement?. Nano Lett.2010, 10, 553–561.

    Article  CAS  Google Scholar 

  11. Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W. Surface-enhanced Raman scattering. J. Phys.: Condens. Matter1992, 4, 1143–1212.

    CAS  Google Scholar 

  12. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett.2008, 8, 902–907.

    Article  CAS  Google Scholar 

  13. Moser, J.; Barreiro, A.; Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett.2007, 91, 163513.

    Article  Google Scholar 

  14. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett.2008, 100, 016602.

    Article  CAS  Google Scholar 

  15. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science2008, 320, 1308–1308.

    Article  CAS  Google Scholar 

  16. Ren, W.; Fang, Y. X.; Wang, E. K. A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. ACS Nano2011, 5, 6425–6433.

    Article  CAS  Google Scholar 

  17. He, S. J.; Liu, K. K.; Su, S.; Yan, J.; Mao, X. H.; Wang, D. F.; He, Y.; Li, L. J.; Song, S. P.; Fan, C. H. Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. Anal. Chem.2012, 84, 4622–4627.

    Article  CAS  Google Scholar 

  18. Chourpa, I.; Lei, F. H.; Dubois, P.; Manfait, M.; Sockalingum, G. D. Intracellular applications of analytical SERS spectroscopy and multispectral imaging. Chem. Soc. Rev.2008, 37, 993–1000.

    Article  CAS  Google Scholar 

  19. Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev.2011, 111, 3736–3827.

    Article  CAS  Google Scholar 

  20. Wang, P.; Xia, M.; Liang, O. W.; Sun, K.; Cipriano, A. F.; Schroeder, T.; Liu, H. N.; Xie, Y. H. Label-free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure. Anal. Chem.2015, 87, 10255–10261

    Article  CAS  Google Scholar 

  21. Mu, C.; Zhang, J. P.; Xu, D. S. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering. Nanotechnology2010, 21, 015604.

    Article  Google Scholar 

  22. Du, Y. X.; Zhao, Y.; Qu, Y.; Chen, C. H.; Chen, C. M.; Chuang, C. H.; Zhu, Y. W. Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection. J. Mater. Chem. C2014, 2, 4683–4691.

    Article  CAS  Google Scholar 

  23. Xu, W. G.; Xiao, J. Q.; Chen, Y. F.; Chen, Y. B.; Ling, X.; Zhang, J. Graphene-veiled gold substrate for surface-enhanced Raman spectroscopy. Adv. Mater.2013, 25, 928–933.

    Article  CAS  Google Scholar 

  24. Huang, Z. L.; Meng, G. W.; Huang, Q.; Yang, Y. J.; Zhu, C. H.; Tang, C. L. Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering. Adv. Mater.2010, 22, 4136–4139.

    Article  CAS  Google Scholar 

  25. Sivashanmugan, K.; Liao, J. D.; Liu, B. H.; Yao, C. K. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution. Anal. Chim. Acta2013, 800, 56–64.

    Article  CAS  Google Scholar 

  26. Sivashanmugan, K.; Liao, J. D.; Shao, P. L.; Liu, B. H.; Tseng, T. Y.; Chang, C. Y. Intense Raman scattering on hybrid Au/Ag nanoplatforms for the distinction of MMP-9-digested collagen type-I fiber detection. Biosens. Bioelectron.2015, 72, 61–70.

    Article  CAS  Google Scholar 

  27. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of highquality and uniform graphene films on copper foils. Science2009, 324, 1312–1314.

    Article  CAS  Google Scholar 

  28. Wang, L. L.; Roitberg, A.; Meuse, C.; Gaigalas, A. K. Raman and FTIR spectroscopies of fluorescein in solutions. Spectrochim. Acta Part A: Mol. Biomol. Spectros.2001, 57, 1781–1791.

    Article  CAS  Google Scholar 

  29. Hildebrandt, P.; Stockburger, M. Surface enhanced resonance Raman study on fluorescein dyes. J. Raman Spectrosc.1986, 17, 55–58.

    Article  CAS  Google Scholar 

  30. Ray III, K. G.; McCreery, R. L. Characterization of the surface carbonyl and hydroxyl coverage on glassy carbon electrodes using Raman spectroscopy. J. Electroanal. Chem.1999, 469, 150–158.

    Article  CAS  Google Scholar 

  31. Xu, W. G.; Mao, N. N.; Zhang, J. Graphene: a platform for surface-enhanced Raman spectroscopy. Small2013, 9, 1206–1224.

    Article  CAS  Google Scholar 

  32. Zhang, D. M.; Vangala, K.; Jiang, D. P.; Zou, S. G.; Pechan, T. Drop coating deposition Raman spectroscopy of fluorescein isothiocyanate labeled protein. Appl. Spectrosc.2010, 64, 1078–1085.

    Article  CAS  Google Scholar 

  33. Yu, Q. M.; Guan, P.; Qin, D.; Golden, G.; Wallace, P. M. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett.2008, 8, 1923–1928.

    Article  CAS  Google Scholar 

  34. Félidj, N.; Aubard, J.; Lévi, G.; Krenn, J. R.; Salerno, M.; Schider, G.; Lamprecht, B.; Leitner, A.; Aussenegg, F. R. Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering. Phys. Rev. B2002, 65, 075419.

    Article  Google Scholar 

  35. Liu, D. M.; Wang, Q. K.; Hu, J. Fabrication and characterization of highly ordered Au nanocone array-patterned glass with enhanced SERS and hydrophobicity. Appl. Surf. Sci.2015, 356, 364–369.

    Article  CAS  Google Scholar 

  36. Maurer, T.; Nicolas, R.; Lévêque, G.; Subramanian, P.; Proust, J.; Béal, J.; Schuermans, S.; Vilcot, J. P.; Herro, Z.; Kazan, M. et al. Enhancing LSPR sensitivity of Au gratings through graphene coupling to Au film. Plasmonics2014, 9, 507–512.

    Article  CAS  Google Scholar 

  37. Foucher, F.; Guimbretière, G.; Bost, N.; Westall, F. Petrographical and mineralogical applications of Raman mapping. In Raman Spectroscopy and Applications. Maaz, K., Ed.; IntechOpen: London, 2017; pp 163–180.

    Google Scholar 

Download references

Acknowledgements

This work has been supported by China Scholarship Council, Chinese National Natural Science and MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD with the funding numbers of 201606180013, 51520105003 and MAT2017-89868-P, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Luo.

Electronic supplementary material

12274_2019_2514_MOESM1_ESM.pdf

Large-scale highly ordered periodic Au nano-discs/graphene and graphene/Au nanoholes plasmonic substrates for surface-enhanced Raman scattering

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Luo, F. Large-scale highly ordered periodic Au nano-discs/graphene and graphene/Au nanoholes plasmonic substrates for surface-enhanced Raman scattering. Nano Res. 12, 2788–2795 (2019). https://doi.org/10.1007/s12274-019-2514-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2514-5

Keywords

Navigation