Skip to main content
Log in

2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Designing a highly efficient non-precious based oxygen reduction reaction (ORR) electrocatalyst is critical for the commercialization of various sustainable energy storage and conversion devices such as metal-air batteries and fuel cells. Herein, we report a convenient strategy to synthesis Fe3O4 embedded in N doped hollow carbon sphere (NHCS) for ORR. What’s interesting is that the carbon microsphere is composed of two-dimensional (2D) nanoplate that could provide more exposed active sites. The usage of solid ZnO nanowires as zinc source is crucial to obtain this structure. The Fe3O4@NHCS-2 exhibits better catalytic activity and durability than the commercial Pt/C catalyst. Moreover, it further displays high-performance of Zn-air batteries as a cathode electrocatalyst with a high-power density of 133 mW·cm−2 and high specific capacity of 701 mA·h·g−1. The special hollow structure composed 2D nanoplate, high surface area, as well as synergistic effect between the high active Fe3O4 nanoparticles and N-doped matrix endows this outstanding catalytic activity. The work presented here can be easily extended to prepare metal compounds decorated carbon nanomaterials with special structure for a broad range of energy storage and conversion devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature2012, 486, 43–51.

    CAS  Google Scholar 

  2. Wang, T. T.; Wu, J. H.; Liu, Y. L.; Cui, X.; Ding, P.; Deng, J.; Zha, C. Y.; Coy, E.; Li, Y. G. Scalable preparation and stabilization of atomic-thick CoNi layered double hydroxide nanosheets for bifunctional oxygen electrocatalysis and rechargeable zinc-air batteries. Energy Storage Mater.2019, 16, 24–30.

    Google Scholar 

  3. Fu, S. F.; Zhu, C. Z.; Song, J. H.; Du, D.; Lin, Y. H. Metal-organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv. Energy Mater.2017, 7, 1700363.

    Google Scholar 

  4. Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater.2013, 12, 81–87.

    CAS  Google Scholar 

  5. Wang, N.; Li, L. G.; Zhao, D. K.; Kang, X. W.; Tang, Z. H.; Chen, S. W. Graphene composites with cobalt sulfide: Efficient trifunctional electrocatalysts for oxygen reversible catalysis and hydrogen production in the same electrolyte. Small2017, 13, 1701025.

    Google Scholar 

  6. Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev.2015, 115, 4823–4892.

    CAS  Google Scholar 

  7. Tian, H.; Wang, N.; Xu, F. G.; Zhang, P. F.; Hou, D.; Mai, Y. Y.; Feng, X. L. Nitrogen-doped carbon nanosheets and nanoflowers with holey mesopores for efficient oxygen reduction catalysis. J. Mater. Chem. A2018, 6, 10354–10360.

    CAS  Google Scholar 

  8. Amiinu, I. S.; Liu, X. B.; Pu, Z. H.; Li, W. Q.; Li, Q. D.; Zhang, J.; Tang, H. L.; Zhang, H. N.; Mu, S. C. From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv. Funct. Mater.2018, 28, 1704638.

    Google Scholar 

  9. Wang, R.; Dong, X. Y.; Du, J.; Zhao, J. Y.; Zang, S. Q. MOF-derived bifunctional Cu3P nanoparticles coated by a N, P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater.2018, 30, 1703711.

    Google Scholar 

  10. Tang, F.; Lei, H. T.; Wang, S. J.; Wang, H. X.; Jin, Z. X. A novel Fe-N-C catalyst for efficient oxygen reduction reaction based on polydopamine nanotubes. Nanoscale2017, 9, 17364–17370.

    CAS  Google Scholar 

  11. Hu, Y.; Jensen, J. O.; Zhang, W.; Cleemann, L. N.; Xing, W.; Bjerrum, N. J.; Li, Q. F. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew. Chem., Int. Ed.2014, 53, 3675–3679.

    CAS  Google Scholar 

  12. Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed.2016, 55, 2650–2676.

    CAS  Google Scholar 

  13. Qiao, Y. Y.; Yuan, P. F.; Hu, Y. F.; Zhang, J. N.; Mu, S. C.; Zhou, J. H.; Li, H.; Xia, H. C.; He, J.; Xu, Q. Sulfuration of an Fe-N-C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries. Adv. Mater.2018, 30, 1804504.

    Google Scholar 

  14. Guo, Y. Y.; Yuan, P. F.; Zhang, J. N.; Hu, Y. F.; Amiinu, I. S.; Wang, X.; Zhou, J. G.; Xia, H. C.; Song, Z. B.; Xu, Q. et al. Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries. ACS Nano2018, 12, 1894–1901.

    CAS  Google Scholar 

  15. Han, C.; Li, Q.; Wang, D. W.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Cobalt sulfide nanowires core encapsulated by a N, S codoped graphitic carbon shell for efficient oxygen reduction reaction. Small2018, 14, 1703642.

    Google Scholar 

  16. Luo, H.; Jiang, W. J.; Zhang, Y.; Niu, S.; Tang, T.; Huang, L. B.; Chen, Y. Y.; Wei, Z. D.; Hu, J. S. Self-terminated activation for high-yield production of N, P-codoped nanoporous carbon as an efficient metal-free electrocatalyst for Zn-air battery. Carbon2018, 128, 97–105.

    CAS  Google Scholar 

  17. Chai, G. L.; Qiu, K.; Qiao, M.; Titirici, M. M.; Shang, C. X.; Guo, Z. X. Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N co-doped graphene frameworks. Energy Environ. Sci.2017, 10, 1186–1195.

    CAS  Google Scholar 

  18. Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed.2017, 56, 610–614.

    CAS  Google Scholar 

  19. Borghei, M.; Laocharoen, N.; Kibena-Põldsepp, E.; Johansson, L. S.; Campbell, J.; Kauppinen, E.; Tammeveski, K.; Rojas, O. J. Porous N, P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: Alternative to Pt-C for alkaline fuel cells. Appl. Catal. B: Environ.2017, 204, 394–402.

    CAS  Google Scholar 

  20. Zheng, X. J.; Wu, J.; Cao, X. C.; Abbott, J.; Jin, C.; Wang, H. B.; Strasser, P.; Yang, R. Z.; Chen, X.; Wu, G. N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Appl. Catal. B: Environ.2019, 241, 442–451.

    CAS  Google Scholar 

  21. Li, Y. Q.; Xu, H. B.; Huang, H. Y.; Gao, L. G.; Zhao, Y. Y.; Ma, T. L. Facile synthesis of N, S co-doped porous carbons from a dual-ligand metal organic framework for high performance oxygen reduction reaction catalysts. Electrochim. Acta2017, 254, 148–154.

    CAS  Google Scholar 

  22. Niu, W. H.; Li, L. G.; Liu, X. J.; Wang, N.; Liu, J.; Zhou, W. J.; Tang, Z. H.; Chen, S. W. Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: An efficient electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc.2015, 137, 5555–5562.

    CAS  Google Scholar 

  23. Hua, Y. Q.; Jiang, T. T.; Wang, K.; Wu, M. M.; Song, S. Q.; Wang, Y.; Tsiakaras, P. Efficient Pt-free electrocatalyst for oxygen reduction reaction: Highly ordered mesoporous N and S co-doped carbon with saccharin as single-source molecular precursor. Appl. Catal. B: Environ.2016, 194, 202–208.

    CAS  Google Scholar 

  24. Wang, H. T.; Wang, W.; Xu, Y. Y.; Dong, S.; Xiao, J. W.; Wang, F.; Liu, H. F.; Xia, B. Y. Hollow nitrogen-doped carbon spheres with Fe3O4 nanoparticles encapsulated as a highly active oxygen-reduction catalyst. ACS Appl. Mater. Interfaces2017, 9, 10610–10617.

    CAS  Google Scholar 

  25. Wang, Y.; Liu, H. Y.; Wang, K.; Song, S. Q.; Tsiakaras, P. 3D interconnected hierarchically porous N-doped carbon with NH3 activation for efficient oxygen reduction reaction. Appl. Catal. B: Environ.2017, 210, 57–66.

    CAS  Google Scholar 

  26. Park, J.; Kwon, T.; Kim, J.; Jin, H.; Kim, H. Y.; Kim, B.; Joo, S. H.; Lee, K. Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chem. Soc. Rev.2018, 47, 8173–8202.

    CAS  Google Scholar 

  27. Pei, Y. C.; Qi, Z. Y.; Li, X. L.; Maligal-Ganesh, R. V.; Goh, T. W.; Xiao, C. X.; Wang, T. Y.; Huang, W. Y. Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts. J. Mater. Chem. A2017, 5, 6186–6192.

    CAS  Google Scholar 

  28. Liang, H. W.; Wei, W.; Wu, Z. S.; Feng, X. L.; Müllen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc.2013, 135, 16002–16005.

    CAS  Google Scholar 

  29. Gao, S. Y.; Fan, B. F.; Feng, R.; Ye, C. L.; Wei, X. J.; Liu, J.; Bu, X. H. N-doped-carbon-coated Fe3O4 from metal-organic framework as efficient electrocatalyst for ORR. Nano Energy2017, 40, 462–470.

    CAS  Google Scholar 

  30. Singh, D. K.; Jenjeti, R. N.; Sampath, S.; Eswaramoorthy, M. Two in one: N-doped tubular carbon nanostructure as an efficient metal-free dual electrocatalyst for hydrogen evolution and oxygen reduction reactions. J. Mater. Chem. A2017, 5, 6025–6031.

    CAS  Google Scholar 

  31. Li, X. C.; Zhang, L.; He, G. H. Fe3O4 doped double-shelled hollow carbon spheres with hierarchical pore network for durable high-performance supercapacitor. Carbon2016, 99, 514–522.

    CAS  Google Scholar 

  32. Huang, J.; Cheng, S. P.; Chen, Y. X.; Chen, Z. L.; Luo, H.; Xia, X. H.; Liu, H. B. High-rate capability and long-term cycling of self-assembled hierarchical Fe3O4/carbon hollow spheres through interfacial control. J. Mater. Chem. A2019, 7, 16720–16727.

    CAS  Google Scholar 

  33. Li, Y. Q.; Huang, H. Y.; Chen, S. R.; Wang, C.; Ma, T. L. Nanowire-templated synthesis of FeNx-decorated carbon nanotubes as highly efficient, universal-pH, oxygen reduction reaction catalysts. Chem.-Eur. J.2019, 25, 2637–2644.

    CAS  Google Scholar 

  34. Pan, J.; Song, S. Y.; Li, J. Q.; Wang, F.; Ge, X.; Yao, S.; Wang, X.; Zhang, H. J. Solid ion transition route to 3D S-N-codoped hollow carbon nanosphere/graphene aerogel as a metal-free handheld nanocatalyst for organic reactions. Nano Res.2017, 10, 3486–3495.

    CAS  Google Scholar 

  35. Li, Y. Q.; Huang, H. Y.; Chen, S. R.; Wang, C.; Liu, A. M.; Ma, T. L. Killing two birds with one stone: A highly active tubular carbon catalyst with effective N doping for oxygen reduction and hydrogen evolution reactions. Catal. Lett.2019, 149, 486–495.

    CAS  Google Scholar 

  36. Wang, T. H.; Tan, S. X.; Liang, C. H. Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation. Carbon2009, 47, 1880–1883.

    CAS  Google Scholar 

  37. He, X. J.; Ling, P. H.; Yu, M. X.; Wang, X. T.; Zhang, X. Y.; Zheng, M. D. Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors. Electrochim. Acta2013, 105, 635–641.

    CAS  Google Scholar 

  38. Gadipelli, S.; Zhao, T. T.; Shevlin, S. A.; Guo, Z. X. Switching effective oxygen reduction and evolution performance by controlled graphitization of a cobalt-nitrogen-carbon framework system. Energy Environ. Sci.2016, 9, 1661–1667.

    CAS  Google Scholar 

  39. You, B.; Jiang, N.; Sheng, M. L.; Drisdell, W. S.; Yano, J.; Sun, Y. J. Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal.2015, 5, 7068–7076.

    CAS  Google Scholar 

  40. Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater.2015, 27, 5010–5016.

    CAS  Google Scholar 

  41. Jiang, H. L.; Liu, B.; Lan, Y. Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F. Q.; Xu, Q. From metal-organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc.2011, 133, 11854–11857.

    CAS  Google Scholar 

  42. Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano2014, 8, 12660–12668.

    CAS  Google Scholar 

  43. Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy2016, 1, 15006.

    CAS  Google Scholar 

  44. Proietti, E.; Jaouen, F.; Lefèvre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J. P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun.2011, 2, 416.

    Google Scholar 

  45. Fu, X. G.; Zamani, P.; Choi, J. Y.; Hassan, F. M.; Jiang, G. P.; Higgins, D. C.; Zhang, Y. N.; Hoque, M. A.; Chen, Z. W. In situ polymer graphenization ingrained with nanoporosity in a nitrogenous electrocatalyst boosting the performance of polymer-electrolyte-membrane fuel cells. Adv. Mater.2017, 29, 1604456.

    Google Scholar 

  46. Sharifi, T.; Hu, G. Z.; Jia, X. E.; Wågberg, T. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano2012, 6, 8904–8912.

    CAS  Google Scholar 

  47. Su, Y. H.; Jiang, H. L.; Zhu, Y. H.; Yang, X. L.; Shen, J. H.; Zou, W. J.; Chen, J. D.; Li, C. Z. Enriched graphitic N-doped carbon-supported Fe3O4 nanoparticles as efficient electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A2014, 2, 7281–7287.

    CAS  Google Scholar 

  48. Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc.2012, 134, 9082–9085.

    CAS  Google Scholar 

  49. Zhang, J.; Wang, K. X.; Xu, Q.; Zhou, Y. C.; Cheng, F. Y.; Guo, S. J. Beyond yolk-shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano2015, 9, 3369–3376.

    CAS  Google Scholar 

  50. Wei, Q. L.; Yang, X. H.; Zhang, G. X.; Wang, D. N.; Zuin, L.; Banham, D.; Yang, L. J.; Ye, S. Y.; Wang, Y. L.; Mohamedi, M. et al. An active and robust Si-Fe/N/C catalyst derived from waste reed for oxygen reduction. Appl. Catal. B: Environ.2018, 237, 85–93.

    CAS  Google Scholar 

  51. Xu, P.; Zhang, J.; Jiang, G. P.; Hassan, F.; Choi, J. Y.; Fu, X. G.; Zamani, P.; Yang, L. J.; Banham, D.; Ye, S. Y. et al. Embellished hollow spherical catalyst boosting activity and durability for oxygen reduction reaction. Nano Energy2018, 51, 745–753.

    CAS  Google Scholar 

  52. Wu, Z. X.; Liu, R.; Wang, J.; Zhu, J.; Xiao, W. P.; Xuan, C. J.; Lei, W.; Wang, D. L. Nitrogen and sulfur Co-doping of 3D hollow-structured carbon spheres as an efficient and stable metal free catalyst for the oxygen reduction reaction. Nanoscale2016, 8, 19086–19092.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51772039), the Fundamental Research Funds for the Central University (No. DUT18LK13). The Research Center for Solar Light Energy Conversion, Kyushu Institute of Technology, Japan also supports this work financially.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanqiang Li, Siru Chen or Tingli Ma.

Electronic supplementary material

12274_2019_2512_MOESM1_ESM.pdf

2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Huang, H., Chen, S. et al. 2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res. 12, 2774–2780 (2019). https://doi.org/10.1007/s12274-019-2512-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2512-7

Keywords

Navigation